Write The Expression In Terms Of Sin & Cos and Simplify

tristatefabricatorsinc

Junior Member
Joined
Jan 31, 2006
Messages
60
Write The Expression In Terms Of Sin & Cos and Simplify It

A) cos^ 2 x - sin^2 x
---------------------- I am unsure how to solve this (struggling)
sin x cos x

B) sec x - cosx

On this one I know sec x = 1 / cos x

but I do not know how to get past

1
------ - cos x
cos x

How can you simplify this more? The answer the book came up with I beleive had a cot in it and something else, but I cannot fully remember (Dont have my book with me)

Any assistance would be greatly appreciated!

Thanks
 
Re: Write The Expression In Terms Of Sin & Cos and Simpl

Hello, tristatefabricatorsinc!

Write the expression in terms of sin & cos and simplify.

A)    cos2xsin2xsinxcosx\displaystyle A)\;\;\frac{\cos^2x\,-\,\sin^2x}{\sin x\cdot\cos x}
There are a number of solutions . . .

If you recognize the Double-angle identities:
    cos2θsin2θ=cos2θ          2sinθcosθ=sin2θ\displaystyle \;\;\cos^2\theta\,-\,\sin^2\theta\:=\:\cos2\theta\;\;\;\;\;2\cdot\sin\theta\cdot\cos\theta\:=\:\sin2\theta

the problem becomes: \(\displaystyle \L\,\frac{\cos2x}{\frac{1}{2}\cdot\sin2x}\)=  2cot2x\displaystyle \:=\;2\cdot\cot2x


Or we can make two fractions:
\(\displaystyle \L\;\;\;\frac{\cos^2x}{\sin x\cdot\cos x}\,-\,\frac{\sin^2}{\sin x\cdot\cos }\:=\:\frac{\cos x}{\sin x}\,-\,\frac{\sin x}{\cos x}\)=cotxtanx\displaystyle \:=\:\cot x\,-\,\tan x



B)    secxcosx\displaystyle B)\;\;\sec x\,-\,\cos x

On this one I know secx=1cosx\displaystyle \sec x\,=\,\frac{1}{\cos x}

but I do not know how to get past: 1cosxcosx\displaystyle \,\frac{1}{\cos x}\,-\,\cos x
We have: \(\displaystyle \L\:\frac{1}{\cos x}\,-\,\frac{\cos x}{1}\)

Get a common denominator: \(\displaystyle \L\:\frac{1}{\cos x}\,-\,\frac{\cos x}{1}\cdot\frac{\cos x}{\cos x} \;=\;\frac{1}{\cos x} \,-\,\frac{\cos^2x}{\cos x} \;=\;\frac{1\,-\,\cos^2x}{\cos x}\;=\;\frac{\sin^2x}{\cos x}\)

\(\displaystyle \L\;\;\;=\:\frac{\sin x}{1}\cdot\frac{\sin x}{\cos x}\)  =  sinxtanx\displaystyle \;=\;\sin x\cdot\tan x
 
Top