your favorite method

logistic_guy

Senior Member
Joined
Apr 17, 2024
Messages
1,407
Solve the differential equation by your favorite method to get Green's function.

d2ydx2+k2y=f(x)\displaystyle \frac{d^2y}{dx^2} + k^2y = f(x)

a<x<b\displaystyle a < x < b
 
💜

A(x)coskx+B(x)sinkx=0\displaystyle A'(x)\cos kx + B'(x)\sin kx = 0

kA(x)sinkx+kB(x)coskx=f(x)\displaystyle -kA'(x)\sin kx + kB'(x)\cos kx = f(x)
 
A(x)coskx+B(x)sinkx=0\displaystyle A'(x)\cos kx + B'(x)\sin kx = 0
Let us solve for A(x)\displaystyle A'(x).

A(x)=B(x)sinkxcoskx\displaystyle A'(x)= -\frac{B'(x)\sin kx}{\cos kx}
 
A(x)=B(x)sinkxcoskx\displaystyle A'(x)= -\frac{B'(x)\sin kx}{\cos kx}
We will plug this result in the second equation and we will solve for B(x)\displaystyle B'(x).

kA(x)sinkx+kB(x)coskx=f(x)\displaystyle -kA'(x)\sin kx + kB'(x)\cos kx = f(x)


k(B(x)sinkxcoskx)sinkx+kB(x)coskx=f(x)\displaystyle -k\left(-\frac{B'(x)\sin kx}{\cos kx}\right)\sin kx + kB'(x)\cos kx = f(x)


kB(x)sin2kx+kB(x)cos2kx=f(x)coskx\displaystyle kB'(x)\sin^2 kx + kB'(x)\cos^2 kx = f(x)\cos kx


kB(x)(sin2kx+cos2kx)=f(x)coskx\displaystyle kB'(x)(\sin^2 kx + \cos^2 kx) = f(x)\cos kx


kB(x)(1)=f(x)coskx\displaystyle kB'(x)(1) = f(x)\cos kx


kB(x)=f(x)coskx\displaystyle kB'(x) = f(x)\cos kx


B(x)=f(x)coskxk\displaystyle B'(x) = \frac{f(x)\cos kx}{k}

Then,

A(x)=f(x)sinkxk\displaystyle A'(x)= -\frac{f(x)\sin kx}{k}
 
From the variation of parameters method, we know that the general solution to this differential equation is:

y(x)=A(x)coskx+B(x)sinkx\displaystyle y(x) = A(x)\cos kx + B(x)\sin kx

From the previous post, we get:

y(x)=coskxkαxf(s)sinks ds+sinkxkβxf(s)cosks ds\displaystyle y(x) = -\frac{\cos kx}{k}\int_{\alpha}^{x}f(s)\sin ks \ ds + \frac{\sin kx}{k} \int_{\beta}^{x}f(s)\cos ks \ ds

Or

y(x)=sinkxkβxf(s)cosks dscoskxkαxf(s)sinks ds\displaystyle y(x) = \frac{\sin kx}{k} \int_{\beta}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{\alpha}^{x}f(s)\sin ks \ ds

where the constants α\displaystyle \alpha and β\displaystyle \beta can be found from the boundary conditions!
 
Now to get Green's function, we should have the following boundary conditions:

y(a)=y(b)=0\displaystyle y(a) = y(b) = 0

Let us apply the first boundary condition.

0=sinkakβaf(s)cosks dscoskakαaf(s)sinks ds\displaystyle 0 = \frac{\sin ka}{k} \int_{\beta}^{a}f(s)\cos ks \ ds - \frac{\cos ka}{k}\int_{\alpha}^{a}f(s)\sin ks \ ds


coskakαaf(s)sinks ds=sinkakβaf(s)cosks ds\displaystyle \frac{\cos ka}{k}\int_{\alpha}^{a}f(s)\sin ks \ ds = \frac{\sin ka}{k} \int_{\beta}^{a}f(s)\cos ks \ ds


αaf(s)sinks ds=sinkacoskaβaf(s)cosks ds    (1)\displaystyle \int_{\alpha}^{a}f(s)\sin ks \ ds = \frac{\sin ka}{\cos ka} \int_{\beta}^{a}f(s)\cos ks \ ds \ \ \ \ \textcolor{red}{\bold{(1)}}


At this moment, we don't know how to get rid of α\displaystyle \alpha and β\displaystyle \beta. We will try something. It may fail. If it did fail, we would try to think of something else! We will try to do this trick:

αx=αa+ax\displaystyle \int_{\alpha}^{x} = \int_{\alpha}^{a} + \int_{a}^{x}

Back to our solution:

y(x)=sinkxkβxf(s)cosks dscoskxkαxf(s)sinks ds\displaystyle y(x) = \frac{\sin kx}{k} \int_{\beta}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{\alpha}^{x}f(s)\sin ks \ ds


y(x)=sinkxkβxf(s)cosks dscoskxk(αaf(s)sinks ds+axf(s)sinks ds)\displaystyle y(x) = \frac{\sin kx}{k} \int_{\beta}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\left(\int_{\alpha}^{a}f(s)\sin ks \ ds + \int_{a}^{x}f(s)\sin ks \ ds\right)

Now we will replace the first term in the brackets by (1)\displaystyle \textcolor{red}{\bold{(1)}}

y(x)=sinkxkβxf(s)cosks dscoskxk(sinkacoskaβaf(s)cosks ds+axf(s)sinks ds)\displaystyle y(x) = \frac{\sin kx}{k} \int_{\beta}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\left(\frac{\sin ka}{\cos ka} \int_{\beta}^{a}f(s)\cos ks \ ds + \int_{a}^{x}f(s)\sin ks \ ds\right)

Simplify.

y(x)=sinkxkβxf(s)cosks dscoskxsinkakcoskaβaf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \frac{\sin kx}{k} \int_{\beta}^{x}f(s)\cos ks \ ds - \frac{\cos kx\sin ka}{k\cos ka} \int_{\beta}^{a}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds


We got rid of α\displaystyle \alpha😍🥳🤩
 
Let us combine the β\displaystyle \beta in one integral before we apply the second boundary condition.


y(x)=sinkxkβxf(s)cosks dscoskxsinkakcoskaβaf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \frac{\sin kx}{k} \int_{\beta}^{x}f(s)\cos ks \ ds - \frac{\cos kx\sin ka}{k\cos ka} \int_{\beta}^{a}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds



y(x)=sinkxk(βaf(s)cosks ds+axf(s)cosks ds)coskxsinkakcoskaβaf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \frac{\sin kx}{k} \left(\int_{\beta}^{a}f(s)\cos ks \ ds + \int_{a}^{x}f(s)\cos ks \ ds\right) - \frac{\cos kx\sin ka}{k\cos ka} \int_{\beta}^{a}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds



y(x)=sinkxkβaf(s)cosks ds+sinkxkaxf(s)cosks dscoskxsinkakcoskaβaf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \frac{\sin kx}{k}\int_{\beta}^{a}f(s)\cos ks \ ds + \frac{\sin kx}{k}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx\sin ka}{k\cos ka} \int_{\beta}^{a}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds



y(x)=(sinkxkcoskxsinkakcoska)βaf(s)cosks ds+sinkxkaxf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \left(\frac{\sin kx}{k} - \frac{\cos kx\sin ka}{k\cos ka}\right)\int_{\beta}^{a}f(s)\cos ks \ ds + \frac{\sin kx}{k}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds
 
Apply the second boundary condition.

0=(sinkbkcoskbsinkakcoska)βaf(s)cosks ds+sinkbkabf(s)cosks dscoskbkabf(s)sinks ds\displaystyle 0 = \left(\frac{\sin kb}{k} - \frac{\cos kb\sin ka}{k\cos ka}\right)\int_{\beta}^{a}f(s)\cos ks \ ds + \frac{\sin kb}{k}\int_{a}^{b}f(s)\cos ks \ ds - \frac{\cos kb}{k}\int_{a}^{b}f(s)\sin ks \ ds



(coskbsinkakcoskasinkbk)βaf(s)cosks ds=sinkbkabf(s)cosks dscoskbkabf(s)sinks ds\displaystyle \left(\frac{\cos kb\sin ka}{k\cos ka} - \frac{\sin kb}{k}\right)\int_{\beta}^{a}f(s)\cos ks \ ds = \frac{\sin kb}{k}\int_{a}^{b}f(s)\cos ks \ ds - \frac{\cos kb}{k}\int_{a}^{b}f(s)\sin ks \ ds


Let us simplify (coskbsinkakcoskasinkbk)\displaystyle \left(\frac{\cos kb\sin ka}{k\cos ka} - \frac{\sin kb}{k}\right).


(coskbsinkakcoskasinkbk)=(coskbsinkakcoskasinkbcoskakcoska)=sink(ab)kcoska\displaystyle \left(\frac{\cos kb\sin ka}{k\cos ka} - \frac{\sin kb}{k}\right) = \left(\frac{\cos kb\sin ka}{k\cos ka} - \frac{\sin kb \cos ka}{k\cos ka}\right) = \frac{\sin k(a - b)}{k\cos ka}

This gives us:

sink(ab)kcoskaβaf(s)cosks ds=sinkbkabf(s)cosks dscoskbkabf(s)sinks ds\displaystyle \frac{\sin k(a - b)}{k\cos ka}\int_{\beta}^{a}f(s)\cos ks \ ds = \frac{\sin kb}{k}\int_{a}^{b}f(s)\cos ks \ ds - \frac{\cos kb}{k}\int_{a}^{b}f(s)\sin ks \ ds

Or

βaf(s)cosks ds=kcoskasink(ab)(sinkbkabf(s)cosks dscoskbkabf(s)sinks ds)\displaystyle \int_{\beta}^{a}f(s)\cos ks \ ds = \frac{k\cos ka}{\sin k(a - b)}\left(\frac{\sin kb}{k}\int_{a}^{b}f(s)\cos ks \ ds - \frac{\cos kb}{k}\int_{a}^{b}f(s)\sin ks \ ds\right)

Or

βaf(s)cosks ds=coskasink(ab)(sinkbabf(s)cosks dscoskbabf(s)sinks ds)\displaystyle \int_{\beta}^{a}f(s)\cos ks \ ds = \frac{\cos ka}{\sin k(a - b)}\left(\sin kb\int_{a}^{b}f(s)\cos ks \ ds - \cos kb\int_{a}^{b}f(s)\sin ks \ ds\right)
 
Back to our solution.

y(x)=(sinkxkcoskxsinkakcoska)βaf(s)cosks ds+sinkxkaxf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \left(\frac{\sin kx}{k} - \frac{\cos kx\sin ka}{k\cos ka}\right)\int_{\beta}^{a}f(s)\cos ks \ ds + \frac{\sin kx}{k}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds

Substitute the last result we obtained.

y(x)=(sinkxkcoskxsinkakcoska)[coskasink(ab)(sinkbabf(s)cosks dscoskbabf(s)sinks ds)]+sinkxkaxf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \left(\frac{\sin kx}{k} - \frac{\cos kx\sin ka}{k\cos ka}\right)\left[\frac{\cos ka}{\sin k(a - b)}\left(\sin kb\int_{a}^{b}f(s)\cos ks \ ds - \cos kb\int_{a}^{b}f(s)\sin ks \ ds\right) \right] + \frac{\sin kx}{k}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds

The expression (solution) looks very complicated and I still don't know if my method works.

🤣😛

Let us try to simplify and see what happens.

Let us start by simplifying the brackets: (sinkxkcoskxsinkakcoska)\displaystyle \left(\frac{\sin kx}{k} - \frac{\cos kx\sin ka}{k\cos ka}\right)

(sinkxkcoskxsinkakcoska)=(sinkxcoskakcoskacoskxsinkakcoska)=sink(xa)kcoska\displaystyle \left(\frac{\sin kx}{k} - \frac{\cos kx\sin ka}{k\cos ka}\right) = \left(\frac{\sin kx\cos ka}{k\cos ka} - \frac{\cos kx\sin ka}{k\cos ka}\right) = \frac{\sin k(x - a)}{k\cos ka}

This gives:

y(x)=sink(xa)kcoska[coskasink(ab)(sinkbabf(s)cosks dscoskbabf(s)sinks ds)]+sinkxkaxf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \frac{\sin k(x - a)}{k\cos ka}\left[\frac{\cos ka}{\sin k(a - b)}\left(\sin kb\int_{a}^{b}f(s)\cos ks \ ds - \cos kb\int_{a}^{b}f(s)\sin ks \ ds\right) \right] + \frac{\sin kx}{k}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds



y(x)=sink(xa)ksink(ab)(sinkbabf(s)cosks dscoskbabf(s)sinks ds)+sinkxkaxf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \frac{\sin k(x - a)}{k\sin k(a - b)}\left(\sin kb\int_{a}^{b}f(s)\cos ks \ ds - \cos kb\int_{a}^{b}f(s)\sin ks \ ds\right) + \frac{\sin kx}{k}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds



y(x)=sink(xa)ksink(ab)(sinkbaxf(s)cosks ds+sinkbxbf(s)cosks dscoskbaxf(s)sinks dscoskbxbf(s)sinks)+sinkxkaxf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \frac{\sin k(x - a)}{k\sin k(a - b)}\left(\sin kb\int_{a}^{x}f(s)\cos ks \ ds + \sin kb\int_{x}^{b}f(s)\cos ks \ ds - \cos kb\int_{a}^{x}f(s)\sin ks \ ds - \cos kb\int_{x}^{b}f(s)\sin ks\right) + \frac{\sin kx}{k}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds



y(x)=sink(xa)sinkbksink(ab)axf(s)cosks ds+sink(xa)sinkbksink(ab)xbf(s)cosks dssink(xa)coskbksink(ab)axf(s)sinks dssink(xa)coskbksink(ab)xbf(s)sinks+sinkxkaxf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \frac{\sin k(x - a)\sin kb}{k\sin k(a - b)}\int_{a}^{x}f(s)\cos ks \ ds + \frac{\sin k(x - a)\sin kb}{k\sin k(a - b)}\int_{x}^{b}f(s)\cos ks \ ds - \frac{\sin k(x - a)\cos kb}{k\sin k(a - b)}\int_{a}^{x}f(s)\sin ks \ ds - \frac{\sin k(x - a)\cos kb}{k\sin k(a - b)}\int_{x}^{b}f(s)\sin ks + \frac{\sin kx}{k}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds



y(x)=sink(xa)sinkbksink(ab)axf(s)cosks ds+sink(xa)sinkbksink(ab)xbf(s)cosks dssink(xa)coskbksink(ab)axf(s)sinks dssink(xa)coskbksink(ab)xbf(s)sinks ds+sinkxsinkacoskbsinkxsinkbcoskaksink(ab)axf(s)cosks dscoskxsinkacoskbcoskxsinkbcoskaksink(ab)axf(s)sinks ds\displaystyle y(x) = \frac{\sin k(x - a)\sin kb}{k\sin k(a - b)}\int_{a}^{x}f(s)\cos ks \ ds + \frac{\sin k(x - a)\sin kb}{k\sin k(a - b)}\int_{x}^{b}f(s)\cos ks \ ds - \frac{\sin k(x - a)\cos kb}{k\sin k(a - b)}\int_{a}^{x}f(s)\sin ks \ ds - \frac{\sin k(x - a)\cos kb}{k\sin k(a - b)}\int_{x}^{b}f(s)\sin ks \ ds + \frac{\sin kx\sin ka\cos kb - \sin kx\sin kb\cos ka}{k\sin k(a - b)}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx\sin ka\cos kb - \cos kx\sin kb\cos ka}{k\sin k(a - b)}\int_{a}^{x}f(s)\sin ks \ ds



y(x)=sink(xa)sinkbksink(ab)axf(s)cosks ds+sink(xa)sinkbksink(ab)xbf(s)cosks dssink(xa)coskbksink(ab)axf(s)sinks dssink(xa)coskbksink(ab)xbf(s)sinks dssinkxsinkbcoskaksink(ab)axf(s)cosks ds+sinkxsinkacoskbksink(ab)axf(s)cosks dscoskxsinkacoskbksink(ab)axf(s)sinks ds+coskxsinkbcoskaksink(ab)axf(s)sinks ds\displaystyle y(x) = \frac{\sin k(x - a)\sin kb}{k\sin k(a - b)}\int_{a}^{x}f(s)\cos ks \ ds + \frac{\sin k(x - a)\sin kb}{k\sin k(a - b)}\int_{x}^{b}f(s)\cos ks \ ds - \frac{\sin k(x - a)\cos kb}{k\sin k(a - b)}\int_{a}^{x}f(s)\sin ks \ ds - \frac{\sin k(x - a)\cos kb}{k\sin k(a - b)}\int_{x}^{b}f(s)\sin ks \ ds - \frac{\sin kx\sin kb\cos ka}{k\sin k(a - b)}\int_{a}^{x}f(s)\cos ks \ ds + \frac{\sin kx\sin ka\cos kb}{k\sin k(a - b)}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx\sin ka\cos kb}{k\sin k(a - b)}\int_{a}^{x}f(s)\sin ks \ ds + \frac{\cos kx\sin kb\cos ka}{k\sin k(a - b)}\int_{a}^{x}f(s)\sin ks \ ds

Ahhhhhh that's tough!

😭😭

@khansaheb

Can you check where I went wrong?
🤔
 
Back to our solution.

y(x)=(sinkxkcoskxsinkakcoska)βaf(s)cosks ds+sinkxkaxf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \left(\frac{\sin kx}{k} - \frac{\cos kx\sin ka}{k\cos ka}\right)\int_{\beta}^{a}f(s)\cos ks \ ds + \frac{\sin kx}{k}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds

Substitute the last result we obtained.

y(x)=(sinkxkcoskxsinkakcoska)[coskasink(ab)(sinkbabf(s)cosks dscoskbabf(s)sinks ds)]+sinkxkaxf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \left(\frac{\sin kx}{k} - \frac{\cos kx\sin ka}{k\cos ka}\right)\left[\frac{\cos ka}{\sin k(a - b)}\left(\sin kb\int_{a}^{b}f(s)\cos ks \ ds - \cos kb\int_{a}^{b}f(s)\sin ks \ ds\right) \right] + \frac{\sin kx}{k}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds

The expression (solution) looks very complicated and I still don't know if my method works.

🤣😛

Let us try to simplify and see what happens.

Let us start by simplifying the brackets: (sinkxkcoskxsinkakcoska)\displaystyle \left(\frac{\sin kx}{k} - \frac{\cos kx\sin ka}{k\cos ka}\right)

(sinkxkcoskxsinkakcoska)=(sinkxcoskakcoskacoskxsinkakcoska)=sink(xa)kcoska\displaystyle \left(\frac{\sin kx}{k} - \frac{\cos kx\sin ka}{k\cos ka}\right) = \left(\frac{\sin kx\cos ka}{k\cos ka} - \frac{\cos kx\sin ka}{k\cos ka}\right) = \frac{\sin k(x - a)}{k\cos ka}

This gives:

y(x)=sink(xa)kcoska[coskasink(ab)(sinkbabf(s)cosks dscoskbabf(s)sinks ds)]+sinkxkaxf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \frac{\sin k(x - a)}{k\cos ka}\left[\frac{\cos ka}{\sin k(a - b)}\left(\sin kb\int_{a}^{b}f(s)\cos ks \ ds - \cos kb\int_{a}^{b}f(s)\sin ks \ ds\right) \right] + \frac{\sin kx}{k}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds



y(x)=sink(xa)ksink(ab)(sinkbabf(s)cosks dscoskbabf(s)sinks ds)+sinkxkaxf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \frac{\sin k(x - a)}{k\sin k(a - b)}\left(\sin kb\int_{a}^{b}f(s)\cos ks \ ds - \cos kb\int_{a}^{b}f(s)\sin ks \ ds\right) + \frac{\sin kx}{k}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds



y(x)=sink(xa)ksink(ab)(sinkbaxf(s)cosks ds+sinkbxbf(s)cosks dscoskbaxf(s)sinks dscoskbxbf(s)sinks)+sinkxkaxf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \frac{\sin k(x - a)}{k\sin k(a - b)}\left(\sin kb\int_{a}^{x}f(s)\cos ks \ ds + \sin kb\int_{x}^{b}f(s)\cos ks \ ds - \cos kb\int_{a}^{x}f(s)\sin ks \ ds - \cos kb\int_{x}^{b}f(s)\sin ks\right) + \frac{\sin kx}{k}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds



y(x)=sink(xa)sinkbksink(ab)axf(s)cosks ds+sink(xa)sinkbksink(ab)xbf(s)cosks dssink(xa)coskbksink(ab)axf(s)sinks dssink(xa)coskbksink(ab)xbf(s)sinks+sinkxkaxf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \frac{\sin k(x - a)\sin kb}{k\sin k(a - b)}\int_{a}^{x}f(s)\cos ks \ ds + \frac{\sin k(x - a)\sin kb}{k\sin k(a - b)}\int_{x}^{b}f(s)\cos ks \ ds - \frac{\sin k(x - a)\cos kb}{k\sin k(a - b)}\int_{a}^{x}f(s)\sin ks \ ds - \frac{\sin k(x - a)\cos kb}{k\sin k(a - b)}\int_{x}^{b}f(s)\sin ks + \frac{\sin kx}{k}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds



y(x)=sink(xa)sinkbksink(ab)axf(s)cosks ds+sink(xa)sinkbksink(ab)xbf(s)cosks dssink(xa)coskbksink(ab)axf(s)sinks dssink(xa)coskbksink(ab)xbf(s)sinks ds+sinkxsinkacoskbsinkxsinkbcoskaksink(ab)axf(s)cosks dscoskxsinkacoskbcoskxsinkbcoskaksink(ab)axf(s)sinks ds\displaystyle y(x) = \frac{\sin k(x - a)\sin kb}{k\sin k(a - b)}\int_{a}^{x}f(s)\cos ks \ ds + \frac{\sin k(x - a)\sin kb}{k\sin k(a - b)}\int_{x}^{b}f(s)\cos ks \ ds - \frac{\sin k(x - a)\cos kb}{k\sin k(a - b)}\int_{a}^{x}f(s)\sin ks \ ds - \frac{\sin k(x - a)\cos kb}{k\sin k(a - b)}\int_{x}^{b}f(s)\sin ks \ ds + \frac{\sin kx\sin ka\cos kb - \sin kx\sin kb\cos ka}{k\sin k(a - b)}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx\sin ka\cos kb - \cos kx\sin kb\cos ka}{k\sin k(a - b)}\int_{a}^{x}f(s)\sin ks \ ds



y(x)=sink(xa)sinkbksink(ab)axf(s)cosks ds+sink(xa)sinkbksink(ab)xbf(s)cosks dssink(xa)coskbksink(ab)axf(s)sinks dssink(xa)coskbksink(ab)xbf(s)sinks dssinkxsinkbcoskaksink(ab)axf(s)cosks ds+sinkxsinkacoskbksink(ab)axf(s)cosks dscoskxsinkacoskbksink(ab)axf(s)sinks ds+coskxsinkbcoskaksink(ab)axf(s)sinks ds\displaystyle y(x) = \frac{\sin k(x - a)\sin kb}{k\sin k(a - b)}\int_{a}^{x}f(s)\cos ks \ ds + \frac{\sin k(x - a)\sin kb}{k\sin k(a - b)}\int_{x}^{b}f(s)\cos ks \ ds - \frac{\sin k(x - a)\cos kb}{k\sin k(a - b)}\int_{a}^{x}f(s)\sin ks \ ds - \frac{\sin k(x - a)\cos kb}{k\sin k(a - b)}\int_{x}^{b}f(s)\sin ks \ ds - \frac{\sin kx\sin kb\cos ka}{k\sin k(a - b)}\int_{a}^{x}f(s)\cos ks \ ds + \frac{\sin kx\sin ka\cos kb}{k\sin k(a - b)}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx\sin ka\cos kb}{k\sin k(a - b)}\int_{a}^{x}f(s)\sin ks \ ds + \frac{\cos kx\sin kb\cos ka}{k\sin k(a - b)}\int_{a}^{x}f(s)\sin ks \ ds

Ahhhhhh that's tough!

😭😭

@khansaheb

Can you check where I went wrong?
🤔
No.....
 
Check whether the DE is satisfied by the "solution" through actually differentiating each term.
Then evaluate each term at the given boundaries and check those values against the given values of BCs.
If everything matches - you are home free....
 
Check whether the DE is satisfied by the "solution" through actually differentiating each term.
Then evaluate each term at the given boundaries and check those values against the given values of BCs.
If everything matches - you are home free....
No. Either you solve it and show the audience where I went wrong, or we will ban you temporary as you have been useless during the last 7\displaystyle 7 months. It's your call!

😏😏
 
We will try to use a different approach now. We will start at this part:

y(x)=sink(xa)ksink(ab)(sinkbabf(s)cosks dscoskbabf(s)sinks ds)+sinkxkaxf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \frac{\sin k(x - a)}{k\sin k(a - b)}\left(\sin kb\int_{a}^{b}f(s)\cos ks \ ds - \cos kb\int_{a}^{b}f(s)\sin ks \ ds\right) + \frac{\sin kx}{k}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds

This time we will start simplifying what inside the brackets.

y(x)=sink(xa)ksink(ab)(abf(s)sink(bs) ds)+sinkxkaxf(s)cosks dscoskxkaxf(s)sinks ds\displaystyle y(x) = \frac{\sin k(x - a)}{k\sin k(a - b)}\left(\int_{a}^{b}f(s)\sin k(b - s) \ ds\right) + \frac{\sin kx}{k}\int_{a}^{x}f(s)\cos ks \ ds - \frac{\cos kx}{k}\int_{a}^{x}f(s)\sin ks \ ds
 
We will combine the second and third terms together.

y(x)=sink(xa)ksink(ab)(abf(s)sink(bs) ds)+1kaxf(s)sink(xs) ds\displaystyle y(x) = \frac{\sin k(x - a)}{k\sin k(a - b)}\left(\int_{a}^{b}f(s)\sin k(b - s) \ ds\right) + \frac{1}{k}\int_{a}^{x}f(s)\sin k(x - s) \ ds
 
Multiply the second term and divide it by sink(ab)\displaystyle \sin k(a - b)

y(x)=sink(xa)ksink(ab)(abf(s)sink(bs) ds)+sink(ab)ksink(ab)axf(s)sink(xs) ds\displaystyle y(x) = \frac{\sin k(x - a)}{k\sin k(a - b)}\left(\int_{a}^{b}f(s)\sin k(b - s) \ ds\right) + \frac{\sin k(a - b)}{k\sin k(a - b)}\int_{a}^{x}f(s)\sin k(x - s) \ ds
 
Let us do this trick again:

ab=ax+xb\displaystyle \int_{a}^{b} = \int_{a}^{x} + \int_{x}^{b}

y(x)=sink(xa)ksink(ab)(axf(s)sink(bs) ds+xbf(s)sink(bs) ds)+sink(ab)ksink(ab)axf(s)sink(xs) ds\displaystyle y(x) = \frac{\sin k(x - a)}{k\sin k(a - b)}\left(\int_{a}^{x}f(s)\sin k(b - s) \ ds + \int_{x}^{b}f(s)\sin k(b - s) \ ds\right) + \frac{\sin k(a - b)}{k\sin k(a - b)}\int_{a}^{x}f(s)\sin k(x - s) \ ds

simplify.\displaystyle \textcolor{red}{\bold{simplify.}}

y(x)=sink(xa)ksink(ab)axf(s)sink(bs) ds+sink(ab)ksink(ab)axf(s)sink(xs) ds+sink(xa)ksink(ab)xbf(s)sink(bs) ds\displaystyle y(x) = \frac{\sin k(x - a)}{k\sin k(a - b)}\int_{a}^{x}f(s)\sin k(b - s) \ ds + \frac{\sin k(a - b)}{k\sin k(a - b)}\int_{a}^{x}f(s)\sin k(x - s) \ ds + \frac{\sin k(x - a)}{k\sin k(a - b)}\int_{x}^{b}f(s)\sin k(b - s) \ ds

Or\displaystyle \textcolor{red}{\bold{Or}}

y(x)=1ksink(ab)(sink(xa)axf(s)sink(bs) ds+sink(ab)axf(s)sink(xs) ds)+sink(xa)ksink(ab)xbf(s)sink(bs) ds\displaystyle y(x) = \frac{1}{k\sin k(a - b)}\left(\sin k(x - a)\int_{a}^{x}f(s)\sin k(b - s) \ ds + \sin k(a - b)\int_{a}^{x}f(s)\sin k(x - s) \ ds\right) + \frac{\sin k(x - a)}{k\sin k(a - b)}\int_{x}^{b}f(s)\sin k(b - s) \ ds

We need to find a way to combine ax\displaystyle \int_{a}^{x} together to construct Green's function.
 
We need to find a way to combine ax\displaystyle \int_{a}^{x} together to construct Green's function.
sinAsinB=12[cos(AB)cos(A+B)]\displaystyle \sin A\sin B = \frac{1}{2}\bigg[\cos(A - B) - \cos(A + B)\bigg]

Then,

sink(xa)sink(bs)=12[cosk(xab+s)cosk(xa+bs)]\displaystyle \sin k(x - a)\sin k(b - s) = \frac{1}{2}\bigg[\cos k(x - a - b + s) - \cos k(x - a + b - s)\bigg]
And
sink(ab)sink(xs)=12[cosk(abx+s)cosk(ab+xs)]\displaystyle \sin k(a - b)\sin k(x - s) = \frac{1}{2}\bigg[\cos k(a - b - x + s) - \cos k(a - b + x - s)\bigg]

If we sum these together and use the identity cos(θ)=cos(θ)\displaystyle \cos(-\theta) = \cos(\theta), we get:

sink(xa)sink(bs)+sink(ab)sink(xs)=12[cosk(xab+s)cosk(ab+xs)]\displaystyle \sin k(x - a)\sin k(b - s) + \sin k(a - b)\sin k(x - s) = \frac{1}{2}\bigg[\cos k(x - a - b + s) - \cos k(a - b + x - s)\bigg]


=12[cosk[ (xb)(as) ]cosk[ (xb)+(as) ]]=sink(xb)sink(as)\displaystyle = \frac{1}{2}\bigg[\cos k[ \ (x - b) - (a - s) \ ] - \cos k[ \ (x - b) + (a - s) \ ]\bigg] = \sin k(x - b)\sin k(a - s)

Then,\displaystyle \textcolor{red}{\bold{Then,}}

y(x)=1ksink(ab)(sink(xa)axf(s)sink(bs) ds+sink(ab)axf(s)sink(xs) ds)+sink(xa)ksink(ab)xbf(s)sink(bs) ds\displaystyle y(x) = \frac{1}{k\sin k(a - b)}\left(\sin k(x - a)\int_{a}^{x}f(s)\sin k(b - s) \ ds + \sin k(a - b)\int_{a}^{x}f(s)\sin k(x - s) \ ds\right) + \frac{\sin k(x - a)}{k\sin k(a - b)}\int_{x}^{b}f(s)\sin k(b - s) \ ds

Or\displaystyle \textcolor{red}{\bold{Or}}

y(x)=1ksink(ab)(axf(s)[sink(xa)sink(bs)+sink(ab)sink(xs)]ds)+sink(xa)ksink(ab)xbf(s)sink(bs) ds\displaystyle y(x) = \frac{1}{k\sin k(a - b)}\left(\int_{a}^{x} f(s)\bigg[\sin k(x - a)\sin k(b - s) + \sin k(a - b)\sin k(x - s)\bigg] ds\right) + \frac{\sin k(x - a)}{k\sin k(a - b)}\int_{x}^{b}f(s)\sin k(b - s) \ ds

Or\displaystyle \textcolor{red}{\bold{Or}}

y(x)=1ksink(ab)(axf(s)[sink(xb)sink(as)]ds)+sink(xa)ksink(ab)xbf(s)sink(bs) ds\displaystyle y(x) = \frac{1}{k\sin k(a - b)}\left(\int_{a}^{x} f(s)\bigg[\sin k(x - b)\sin k(a - s)\bigg] ds\right) + \frac{\sin k(x - a)}{k\sin k(a - b)}\int_{x}^{b}f(s)\sin k(b - s) \ ds

Or\displaystyle \textcolor{red}{\bold{Or}}

y(x)=sink(xb)ksink(ab)axf(s)sink(as) ds+sink(xa)ksink(ab)xbf(s)sink(bs) ds\displaystyle y(x) = \frac{\sin k(x - b)}{k\sin k(a - b)}\int_{a}^{x} f(s)\sin k(a - s) \ ds + \frac{\sin k(x - a)}{k\sin k(a - b)}\int_{x}^{b}f(s)\sin k(b - s) \ ds

Or\displaystyle \textcolor{red}{\bold{Or}}

y(x)=abf(s)g(x,s) ds\displaystyle y(x) = \int_{a}^{b} f(s)g(x,s) \ ds

where g(x,s)\displaystyle g(x,s) is the Green's function and it is defined as:

g(x,s)={sink(as)sink(xb)ksink(ab)as<xsink(xa)sink(bs)ksink(ab)x<sb\large g(x,s) =\begin{cases} \frac{\sin k(a - s)\sin k(x - b)}{k\sin k(a - b)} & a \leq s < x\\[2ex] \frac{\sin k(x - a)\sin k(b - s)}{k\sin k(a - b)} & x < s \leq b\end{cases}

Or\displaystyle \textcolor{green}{\bold{Or}}

g(x,s)={sink(sa)sink(bx)ksink(ba)as<xsink(xa)sink(bs)ksink(ba)x<sb\large g(x,s) =\begin{cases} -\frac{\sin k(s - a)\sin k(b - x)}{k\sin k(b-a)} & a \leq s < x\\[2ex] -\frac{\sin k(x - a)\sin k(b - s)}{k\sin k(b-a)} & x < s \leq b\end{cases}
 
Top