D drumergirl7276 New member Joined Oct 30, 2012 Messages 1 Oct 30, 2012 #1 find dy/dx: Y2=(x-1)/( x+1) i dont know how to solve this. Last edited: Oct 30, 2012
P pappus Junior Member Joined Feb 13, 2012 Messages 220 Oct 30, 2012 #2 drumergirl7276 said: find dy/dx: Y2=(x-1)/( x+1) i dont know how to solve this. Click to expand... According to your headline use implicit differentiation: \(\displaystyle \displaystyle{\underbrace{y^2}_{\text{use chain-rule}}=\underbrace{\frac{x-1}{x+1}}_{\text{use quotient rule}}}\) You'll get: \(\displaystyle \displaystyle{2y \cdot y'=\frac{(x+1)-(x-1)}{(x+1)^2}=\frac2{(x+1)^2}}\) Solve for y': \(\displaystyle \displaystyle{y'=\frac2{(x+1)^2} \cdot \frac12 \cdot \sqrt{\frac{x+1}{x-1}}}\) Simplify! Last edited: Oct 30, 2012
drumergirl7276 said: find dy/dx: Y2=(x-1)/( x+1) i dont know how to solve this. Click to expand... According to your headline use implicit differentiation: \(\displaystyle \displaystyle{\underbrace{y^2}_{\text{use chain-rule}}=\underbrace{\frac{x-1}{x+1}}_{\text{use quotient rule}}}\) You'll get: \(\displaystyle \displaystyle{2y \cdot y'=\frac{(x+1)-(x-1)}{(x+1)^2}=\frac2{(x+1)^2}}\) Solve for y': \(\displaystyle \displaystyle{y'=\frac2{(x+1)^2} \cdot \frac12 \cdot \sqrt{\frac{x+1}{x-1}}}\) Simplify!