\(\displaystyle y = \sec(x)\tan(x)\)
\(\displaystyle y' = [\tan(x)][\dfrac{d}{dx}(sec(x))] + [\sec(x)][\dfrac{d}{dx}(\tan(x))]\)
\(\displaystyle y' = [\tan(x)][\sec(x)\tan(x)] + [\sec(x)][\sec^{2}(x)]\)![]()
What is the confusion?!
\(\displaystyle y = \sec(x)\tan(x)\)
\(\displaystyle y' = [\tan(x)][\dfrac{d}{dx}(sec(x))] + [\sec(x)][\dfrac{d}{dx}(\tan(x))]\)
\(\displaystyle y' = [\tan(x)][\sec(x)\tan(x)] + [\sec(x)][\sec^{2}(x)] \ \ \ \ <---- \)![]()
The computer said the answer is right.