Find the area under the curve for \(\displaystyle y = 4 - x^{2}\) for \(\displaystyle [-2, 2]\)
\(\displaystyle \int_{-2}^{2} 4 - x^{2}\)
\(\displaystyle \rightarrow 4x - \dfrac{x^{3}}{3}\) evaluated at \(\displaystyle -2\) (lower bound) and \(\displaystyle 2\) (upper bound)
\(\displaystyle [4(2) - \dfrac{(2)^{3}}{3}] - [4(-2) - \dfrac{(-2)^{3}}{3}] = \frac{32}{3} = 10.7\)
Last edited: