\(\displaystyle \int \dfrac{1}{\sqrt{9 - x^{2} }} dx\)
Use x substitution, not u substitution. :idea:
\(\displaystyle x = 3 \sin \theta\)
\(\displaystyle dx = 3 \cos \theta d \theta\)
\(\displaystyle \int \dfrac{3 \cos \theta}{\sqrt{9 - 9 \sin^{2} \theta}} d\theta\) Note: dx is replaced here :idea:
\(\displaystyle \int \dfrac{3 \cos \theta}{3 \cos \theta} d\theta\)
What's going on here, with regards to the denominator?
\(\displaystyle \int 1 d\theta \rightarrow \theta + C\)
Can't leave it this way, so must solve the \(\displaystyle x\) equation for \(\displaystyle \theta\).
You can draw a triangle, but not necessary.
\(\displaystyle x = 3 \sin \theta\)
\(\displaystyle \sin \theta = \dfrac{x}{3}\)
\(\displaystyle \theta = \arcsin(\dfrac{x}{3})\)
\(\displaystyle \int 1 d\theta \rightarrow \theta + C \rightarrow \arcsin(\dfrac{x}{3}) + C\) Back substitute into \(\displaystyle \theta\) to get final answer
Use x substitution, not u substitution. :idea:
\(\displaystyle x = 3 \sin \theta\)
\(\displaystyle dx = 3 \cos \theta d \theta\)
\(\displaystyle \int \dfrac{3 \cos \theta}{\sqrt{9 - 9 \sin^{2} \theta}} d\theta\) Note: dx is replaced here :idea:
\(\displaystyle \int \dfrac{3 \cos \theta}{3 \cos \theta} d\theta\)
\(\displaystyle \int 1 d\theta \rightarrow \theta + C\)
You can draw a triangle, but not necessary.
\(\displaystyle x = 3 \sin \theta\)
\(\displaystyle \sin \theta = \dfrac{x}{3}\)
\(\displaystyle \theta = \arcsin(\dfrac{x}{3})\)
\(\displaystyle \int 1 d\theta \rightarrow \theta + C \rightarrow \arcsin(\dfrac{x}{3}) + C\) Back substitute into \(\displaystyle \theta\) to get final answer
Last edited: