Prove A = 0, B = 3, C = 4
\(\displaystyle \int \dfrac{x^{3} + 6x^{2} + 3x + 6}{x^{3} + 2x^{2}} dx\)
This becomes \(\displaystyle 1 + \dfrac{4x^{2} + 3x + 6}{x^{3} + 2x^{2}}\)
How did this line come from the one above?
\(\displaystyle \dfrac{4x^{2} + 3x + 7}{x^{3} + 2x^{2}}\)
\(\displaystyle \dfrac{4x^{2} + 3x + 7}{x^{3} + 2x^{2}} = \dfrac{A}{x} + \dfrac{B}{x^{2}} + \dfrac{C}{x + 2}\)
\(\displaystyle \dfrac{4x^{2} + 3x + 7}{x^{2}(x + 2)} = \dfrac{A}{x} + \dfrac{B}{x^{2}} + \dfrac{C}{x + 2}\)
\(\displaystyle 4x^{2} + 3x + 7 = Ax(x + 2) + B(x + 2) + Cx^{2}\)
\(\displaystyle 4(0)^{2} + 3(0) + 7 = A(0)((0) + 2) + B((0) + 2) + C(0)^{2}\)
\(\displaystyle 4(-2)^{2} + 3(-2) + 7 = A(-2)((-2) + 2) + B((-2) + 2) + C(-2)^{2}\)
\(\displaystyle \int \dfrac{x^{3} + 6x^{2} + 3x + 6}{x^{3} + 2x^{2}} dx\)
This becomes \(\displaystyle 1 + \dfrac{4x^{2} + 3x + 6}{x^{3} + 2x^{2}}\)
\(\displaystyle \dfrac{4x^{2} + 3x + 7}{x^{3} + 2x^{2}}\)
\(\displaystyle \dfrac{4x^{2} + 3x + 7}{x^{3} + 2x^{2}} = \dfrac{A}{x} + \dfrac{B}{x^{2}} + \dfrac{C}{x + 2}\)
\(\displaystyle \dfrac{4x^{2} + 3x + 7}{x^{2}(x + 2)} = \dfrac{A}{x} + \dfrac{B}{x^{2}} + \dfrac{C}{x + 2}\)
\(\displaystyle 4x^{2} + 3x + 7 = Ax(x + 2) + B(x + 2) + Cx^{2}\)
\(\displaystyle 4(0)^{2} + 3(0) + 7 = A(0)((0) + 2) + B((0) + 2) + C(0)^{2}\)
\(\displaystyle 4(-2)^{2} + 3(-2) + 7 = A(-2)((-2) + 2) + B((-2) + 2) + C(-2)^{2}\)
Last edited: