Could someone please tell me where I am going wrong here?
I am trying to take the derivative with respect to \(\displaystyle T\) of this equation:
\(\displaystyle \begin{align*} U = \sum_p \int \displaystyle \frac{\hbar \omega}{e^{\frac{\hbar \omega}{k_b T}}-1} D_p(\omega) dw\end{align*}\)
By making a change of variable \(\displaystyle x=\frac{\hbar \omega}{k_b T}\)
And the book shows the result to be
\(\displaystyle \begin{align*}\frac{dU}{dT} = k_b \sum_p \int \frac{x^2 e^x}{(e^x-1)^2} D_p(\omega) dw\end{align*}\)
So the way I went about this was to first make the change of variable substitution for \(\displaystyle x\) giving
\(\displaystyle \begin{align*}U = \sum_p \int \frac{x k_b T}{e^x-1} D_p(\omega) dw\end{align*}\)
and then use the chain rule inside the integral
\(\displaystyle \begin{align*}\frac{dU}{dT} & = \frac{dx}{dT} \frac{dU}{dx} \\&= -\frac{\hbar \omega}{k_b T^2} \frac{dU}{dT}\\&= -\frac{\hbar \omega}{k_b T^2} \frac{d}{dT} (\sum_p \int \frac{x k_b T}{e^x-1} D_p(\omega) dw )\\&= -\frac{\hbar \omega}{k_b T^2} \sum_p \int \frac{d}{dT} ( \frac{x k_b T}{e^x-1} D_p(\omega) dw )\\&= -\frac{\hbar \omega}{k_b T^2} \sum_p \int \frac{k_b T(e^x-1)-e^x x k_b T}{(e^x-1)^2} D_p(\omega) dw \\&= -\frac{\hbar \omega}{k_b T^2} - k_b T \sum_p \int \frac{e^x x - e^x +1}{(e^x-1)^2} D_p(\omega) dw \\&= \frac{\hbar \omega}{k_b T} k_b \sum_p \int \frac{e^x x - e^x +1}{(e^x-1)^2} D_p(\omega) dw \\&= k_b x \sum_p \int \frac{e^x x - e^x +1}{(e^x-1)^2} D_p(\omega) dw \\&= k_b \sum_p \int \frac{e^x x^2 - e^x x +x}{(e^x-1)^2} D_p(\omega) dw \\\end{align*}\)
Which obviously doesn't equal this
\(\displaystyle \begin{align*}\frac{dU}{dT} = k_b \sum_p \int \frac{x^2 e^x}{(e^x-1)^2} D_p(\omega) dw\end{align*}\)
Really at a loss here can't find my mistake. Thanks in advance.
I am trying to take the derivative with respect to \(\displaystyle T\) of this equation:
\(\displaystyle \begin{align*} U = \sum_p \int \displaystyle \frac{\hbar \omega}{e^{\frac{\hbar \omega}{k_b T}}-1} D_p(\omega) dw\end{align*}\)
By making a change of variable \(\displaystyle x=\frac{\hbar \omega}{k_b T}\)
And the book shows the result to be
\(\displaystyle \begin{align*}\frac{dU}{dT} = k_b \sum_p \int \frac{x^2 e^x}{(e^x-1)^2} D_p(\omega) dw\end{align*}\)
So the way I went about this was to first make the change of variable substitution for \(\displaystyle x\) giving
\(\displaystyle \begin{align*}U = \sum_p \int \frac{x k_b T}{e^x-1} D_p(\omega) dw\end{align*}\)
and then use the chain rule inside the integral
\(\displaystyle \begin{align*}\frac{dU}{dT} & = \frac{dx}{dT} \frac{dU}{dx} \\&= -\frac{\hbar \omega}{k_b T^2} \frac{dU}{dT}\\&= -\frac{\hbar \omega}{k_b T^2} \frac{d}{dT} (\sum_p \int \frac{x k_b T}{e^x-1} D_p(\omega) dw )\\&= -\frac{\hbar \omega}{k_b T^2} \sum_p \int \frac{d}{dT} ( \frac{x k_b T}{e^x-1} D_p(\omega) dw )\\&= -\frac{\hbar \omega}{k_b T^2} \sum_p \int \frac{k_b T(e^x-1)-e^x x k_b T}{(e^x-1)^2} D_p(\omega) dw \\&= -\frac{\hbar \omega}{k_b T^2} - k_b T \sum_p \int \frac{e^x x - e^x +1}{(e^x-1)^2} D_p(\omega) dw \\&= \frac{\hbar \omega}{k_b T} k_b \sum_p \int \frac{e^x x - e^x +1}{(e^x-1)^2} D_p(\omega) dw \\&= k_b x \sum_p \int \frac{e^x x - e^x +1}{(e^x-1)^2} D_p(\omega) dw \\&= k_b \sum_p \int \frac{e^x x^2 - e^x x +x}{(e^x-1)^2} D_p(\omega) dw \\\end{align*}\)
Which obviously doesn't equal this
\(\displaystyle \begin{align*}\frac{dU}{dT} = k_b \sum_p \int \frac{x^2 e^x}{(e^x-1)^2} D_p(\omega) dw\end{align*}\)
Really at a loss here can't find my mistake. Thanks in advance.
Last edited: