ahorn
New member
- Joined
- Mar 22, 2014
- Messages
- 44
Question: differentiate \(\displaystyle 2^{3^{x^2}}\)
I found 4 ways of solving this problem, depending on what powers I took out of the natural log. Here I've written out 2 of them. The second one was correct according to the memo given to me. What have I done wrong in the first solution? Thank you
\(\displaystyle 2^{3^{x^2}}=e^{2\ln{2^{3^x}}}\\
\dfrac{d}{dx}e^{2\ln{2^{3^x}}}=e^{2\ln{2^{3^x}}} \cdot2 \cdot\frac{\frac{d}{dx}2^{3^x}}{2^{3^x}}\\
=e^{2\ln{2^{3^x}}} \cdot2\cdot\frac{2^{3^x}\cdot\ln{2^3}}{2^{3^x}}\\
=2^{3^{x^2}}\cdot2\cdot3\ln2\\
=2^{3^{x^2}}\cdot6\ln2\)
OR
\(\displaystyle 2^{3^{x^2}}=e^{3^{x^2}\ln2}\\
\frac{d}{dx}e^{3^{x^2}\ln2}=e^{3^{x^2}\ln2}\cdot \frac{d}{dx}3^{x^2}\ln2\\
=2^{3^{x^2}}\cdot \frac{d}{dx}e^{x^2\ln3}\cdot\ln2\\
=2^{3^{x^2}}\cdot e^{x^2\ln3}\cdot2x\cdot\ln3\cdot\ln2\\
=2^{3^{x^2}}\cdot 3^{x^2}\cdot2x\cdot\ln3\cdot\ln2\\\)
I found 4 ways of solving this problem, depending on what powers I took out of the natural log. Here I've written out 2 of them. The second one was correct according to the memo given to me. What have I done wrong in the first solution? Thank you
\(\displaystyle 2^{3^{x^2}}=e^{2\ln{2^{3^x}}}\\
\dfrac{d}{dx}e^{2\ln{2^{3^x}}}=e^{2\ln{2^{3^x}}} \cdot2 \cdot\frac{\frac{d}{dx}2^{3^x}}{2^{3^x}}\\
=e^{2\ln{2^{3^x}}} \cdot2\cdot\frac{2^{3^x}\cdot\ln{2^3}}{2^{3^x}}\\
=2^{3^{x^2}}\cdot2\cdot3\ln2\\
=2^{3^{x^2}}\cdot6\ln2\)
OR
\(\displaystyle 2^{3^{x^2}}=e^{3^{x^2}\ln2}\\
\frac{d}{dx}e^{3^{x^2}\ln2}=e^{3^{x^2}\ln2}\cdot \frac{d}{dx}3^{x^2}\ln2\\
=2^{3^{x^2}}\cdot \frac{d}{dx}e^{x^2\ln3}\cdot\ln2\\
=2^{3^{x^2}}\cdot e^{x^2\ln3}\cdot2x\cdot\ln3\cdot\ln2\\
=2^{3^{x^2}}\cdot 3^{x^2}\cdot2x\cdot\ln3\cdot\ln2\\\)
Last edited: