ahorn
New member
- Joined
- Mar 22, 2014
- Messages
- 44
Hi
I'd appreciate some help with this limit:
\(\displaystyle \lim_{x \to \infty}[\sqrt{x^2+1}-x]\)
So far, I've tried L'Hopital's Rule and re-ordering the equation:
\(\displaystyle \lim_{x \to \infty}\frac{x \sqrt{x^2+1}-1}{x}\)\(\displaystyle =\lim_{x \to \infty} \frac{\sqrt{x^2+1}+\frac{2x^2}{2 \sqrt{x^2+1}}}{1} \)\(\displaystyle =\lim_{x \to \infty}\frac{2x^2+1}{\sqrt{x^2+1}} \)\(\displaystyle = \lim_{x \to \infty} \frac{4x}{\frac{2x}{2\sqrt{x^2+1}}}\) etc.
I'd appreciate some help with this limit:
\(\displaystyle \lim_{x \to \infty}[\sqrt{x^2+1}-x]\)
So far, I've tried L'Hopital's Rule and re-ordering the equation:
\(\displaystyle \lim_{x \to \infty}\frac{x \sqrt{x^2+1}-1}{x}\)\(\displaystyle =\lim_{x \to \infty} \frac{\sqrt{x^2+1}+\frac{2x^2}{2 \sqrt{x^2+1}}}{1} \)\(\displaystyle =\lim_{x \to \infty}\frac{2x^2+1}{\sqrt{x^2+1}} \)\(\displaystyle = \lim_{x \to \infty} \frac{4x}{\frac{2x}{2\sqrt{x^2+1}}}\) etc.