Maddy_Math
New member
- Joined
- Jun 10, 2013
- Messages
- 28
\(\displaystyle \lim \limits_{x \to 0} \frac{1 - \cos(x)}{x} \) can I find this limit without using L' Hospital's Rule, if yes the how?
\(\displaystyle \lim \limits_{x \to 0} \frac{1 - \cos(x)}{x} \) can I find this limit without using L' Hospital's Rule, if yes the how?
Multiply both numerator and denominator by 1+ cos(x):
\(\displaystyle \dfrac{1- cos^2(x)}{x(1+ cos(x))} = \dfrac{sin^2(x)}{x(1+ cos(x))} = \left( \dfrac{sin(x)}{x} \right) \left( \dfrac{sin(x)}{1} \right) \left( \dfrac{1}{1+ cos(x)} \right)\).