Derivative without using any of the "rules"

hopelynnwelch

Junior Member
Joined
Jan 16, 2015
Messages
60
Okay, so I have this problem and I'm not allowed to use any product rules or anything like that because all that is in the next chapter. So I got some help from a tutor to do this problem and here is what I have. Does this look right to you guys?



\(\displaystyle f(x)\, =\, 2\sqrt{x\, +\, 1\,}\, +\, \dfrac{3}{x\, +\, 2}\, -\, \dfrac{1}{3}\, x^2\)

\(\displaystyle f'(x)\, =\, \displaystyle{ \lim_{h\, \rightarrow\, 0} \,}\)\(\displaystyle \, \dfrac{2\sqrt{(x\, +\, h)\, +\, 1\,}\, -\, 2\sqrt{x\, +\, 1\,}\, +\, \dfrac{3}{(x\, +\, h)\, +\, 2}\, -\, \dfrac{3}{x\, +\, 2}\, -\, \dfrac{(x\, +\, h)^2}{3}\, +\, \dfrac{x^2}{3}}{h}\)

Taking just the first two terms in the numerator above, and working just with them:

\(\displaystyle \dfrac{\left(2\sqrt{x\, +\, h\, +\, 1\,}\, -\, 2\sqrt{x\, +\, 1\,}\right)\, \left(2\sqrt{x\, +\, h\, +\, 1\,}\, +\, 2\sqrt{x\, +\, 1\,}\right)}{h\, \left(2\sqrt{x\, +\, h\, +\, 1\,}\, +\, 2\sqrt{x\, +\, 1\,}\right)}\, =\, \dfrac{4(x\, +\, h\, +\, 1)\, -\, 4(x\, +\, 1)}{2h\, \left(\sqrt{x\, +\, h\, +\, 1\,}\, +\, \sqrt{x\, +\, 1\,}\right)}\)

\(\displaystyle =\, \dfrac{1}{2\,\left(\sqrt{x\, +\, h\, +\, 1\,}\, +\,\sqrt{x\, +\, 1\,}\right)}\, =\, \color{blue}{ \dfrac{1}{4\, \sqrt{x\, +\, 1\,}} }\)

Taking the middle two terms in the second line above, and then multiplying through by \(\displaystyle \, \dfrac{x\, +\, h\, +\, 2}{x\, +\, h\, +\, 2}:\)

\(\displaystyle \dfrac{\left(\dfrac{x\, +\, h\, +\, 2}{x\, +\, h\, +\, 2}\right)\, \left(\dfrac{3}{x\, +\, h\, +\, 2}\right)\, -\, \left(\dfrac{3}{x\, +\, 2}\right)\, \left(\dfrac{x\, +\, h\, +\, 2}{x\, +\, h\, +\, 2}\right)}{h}\)

\(\displaystyle =\, \dfrac{3(x\, +\, 2)\, -\, 3(x\, +\, h\, +\, 2)}{(x\, +\, h\, +\, 2)\, (x\, +\, 2)}\, \cdot\, \dfrac{1}{h}\, =\, \dfrac{3x\, +\, 6\, -\, 3x\, -\, 3h\, -\, 6}{x^2\, +\, 4x\, +\, 4\, +\, xh\, +\, 2h}\, \cdot\, \dfrac{1}{h}\)

\(\displaystyle =\, \dfrac{-3}{x^2\, +\, 4x\, +\, 4}\, =\, \color{red}{ \dfrac{-3}{(x\, +\,2)^2} }\)

And now doing just the last two terms:

\(\displaystyle \dfrac{-\left[ \dfrac{(x\, +\, h)^2}{3}\, -\, \dfrac{x^2}{3}\right]}{h}\, =\, \dfrac{x^2\, -\, 2xh\, +\, h^2\, -\, x^2}{h}\)

\(\displaystyle =\, \dfrac{-h^2\, -\, 2xh}{3h}\, =\, \dfrac{-h\, -\, 2x}{3}\, =\, \color{green}{ \dfrac{-2x}{3} }\)

Then putting it all together:

\(\displaystyle f'(x)\, =\, \displaystyle{ \lim_{h\, \rightarrow\, 0} \, }\) \(\displaystyle \, \color{blue}{ \dfrac{1}{4\, \sqrt{x\, +\, 1\,}} }\, +\, \color{red}{ \dfrac{-3}{(x\, +\,2)^2} }\,-\, \color{green}{ \dfrac{2x}{3} }\)

Sorry if the work is a little cluttered.
 
Last edited by a moderator:
Okay, so I have this problem and I'm not allowed to use any product rules or anything like that because all that is in the next chapter. So I got some help from a tutor to do this problem and here is what I have. Does this look right to you guys?



\(\displaystyle f(x)\, =\, 2\sqrt{x\, +\, 1\,}\, +\, \dfrac{3}{x\, +\, 2}\, -\, \dfrac{1}{3}\, x^2\)

\(\displaystyle f'(x)\, =\, \displaystyle{ \lim_{h\, \rightarrow\, 0} \,}\)\(\displaystyle \, \dfrac{2\sqrt{(x\, +\, h)\, +\, 1\,}\, -\, 2\sqrt{x\, +\, 1\,}\, +\, \dfrac{3}{(x\, +\, h)\, +\, 2}\, -\, \dfrac{3}{x\, +\, 2}\, -\, \dfrac{(x\, +\, h)^2}{3}\, +\, \dfrac{x^2}{3}}{h}\)

Taking just the first two terms in the numerator above, and working just with them:

\(\displaystyle \dfrac{\left(2\sqrt{x\, +\, h\, +\, 1\,}\, -\, 2\sqrt{x\, +\, 1\,}\right)\, \left(2\sqrt{x\, +\, h\, +\, 1\,}\, +\, 2\sqrt{x\, +\, 1\,}\right)}{h\, \left(2\sqrt{x\, +\, h\, +\, 1\,}\, +\, 2\sqrt{x\, +\, 1\,}\right)}\, =\, \dfrac{4(x\, +\, h\, +\, 1)\, -\, 4(x\, +\, 1)}{2h\, \left(\sqrt{x\, +\, h\, +\, 1\,}\, +\, \sqrt{x\, +\, 1\,}\right)}\)

\(\displaystyle =\, \dfrac{1}{2\,\left(\sqrt{x\, +\, h\, +\, 1\,}\, +\,\sqrt{x\, +\, 1\,}\right)}\, =\, \color{blue}{ \dfrac{1}{4\, \sqrt{x\, +\, 1\,}} }\)

Taking the middle two terms in the second line above, and then multiplying through by \(\displaystyle \, \dfrac{x\, +\, h\, +\, 2}{x\, +\, h\, +\, 2}:\)

\(\displaystyle \dfrac{\left(\dfrac{x\, +\, h\, +\, 2}{x\, +\, h\, +\, 2}\right)\, \left(\dfrac{3}{x\, +\, h\, +\, 2}\right)\, -\, \left(\dfrac{3}{x\, +\, 2}\right)\, \left(\dfrac{x\, +\, h\, +\, 2}{x\, +\, h\, +\, 2}\right)}{h}\)

\(\displaystyle =\, \dfrac{3(x\, +\, 2)\, -\, 3(x\, +\, h\, +\, 2)}{(x\, +\, h\, +\, 2)\, (x\, +\, 2)}\, \cdot\, \dfrac{1}{h}\, =\, \dfrac{3x\, +\, 6\, -\, 3x\, -\, 3h\, -\, 6}{x^2\, +\, 4x\, +\, 4\, +\, xh\, +\, 2h}\, \cdot\, \dfrac{1}{h}\)

\(\displaystyle =\, \dfrac{-3}{x^2\, +\, 4x\, +\, 4}\, =\, \color{red}{ \dfrac{-3}{(x\, +\,2)^2} }\)

And now doing just the last two terms:

\(\displaystyle \dfrac{-\left[ \dfrac{(x\, +\, h)^2}{3}\, -\, \dfrac{x^2}{3}\right]}{h}\, =\, \dfrac{x^2\, -\, 2xh\, +\, h^2\, -\, x^2}{h}\)

\(\displaystyle =\, \dfrac{-h^2\, -\, 2xh}{3h}\, =\, \dfrac{-h\, -\, 2x}{3}\, =\, \color{green}{ \dfrac{-2x}{3} }\)

Then putting it all together:

\(\displaystyle f'(x)\, =\, \displaystyle{ \lim_{h\, \rightarrow\, 0} \, }\) \(\displaystyle \, \color{blue}{ \dfrac{1}{4\, \sqrt{x\, +\, 1\,}} }\, +\, \color{red}{ \dfrac{-3}{(x\, +\,2)^2} }\,-\, \color{green}{ \dfrac{2x}{3} }\)

Sorry if the work is a little cluttered.

First pair: You dropped a 4 in the numerator, shoud be

\(\displaystyle =\, \dfrac{4}{2\,\left(\sqrt{x\, +\, h\, +\, 1\,}\, +\,\sqrt{x\, +\, 1\,}\right)}\, =\, \color{blue}{ \dfrac{1}{\sqrt{x\, +\, 1\,}} }\)

Second Pair: You corrected yourself (put over common denominator by cross multipling) and it turned out correct.

Third pair: Typo in the first line but you have the correct second line and correct answer.

Thus, correcting the factor of 4:
\(\displaystyle f'(x)\, =\, \displaystyle{ \lim_{h\, \rightarrow\, 0} \, }\) \(\displaystyle \, \color{blue}{ \dfrac{1}{\sqrt{x\, +\, 1\,}} }\, +\, \color{red}{ \dfrac{-3}{(x\, +\,2)^2} }\,-\, \color{green}{ \dfrac{2x}{3} }\)
 
I'm not sure how you turned my paper into math but thank you for catching my mistake and pointing out my error!
 
I'm not sure how you turned my paper into math but thank you for catching my mistake and pointing out my error!

You're welcome but look at the bottom of your post for the Edit reason:
"Last edited by stapel; Today at 05:57 PM. Reason: Typing out the text contained in the graphic."
 
Top