Max and min problem: maximize cylindrical vol. w/ 400cm^2 surface area

Anthonyk2013

Junior Member
Joined
Sep 15, 2013
Messages
132
Struggling with Q 5

5. A closed cylindrical container has a surface area of 400 cm2. Determine the dimensions of maximum volume.

My work:

\(\displaystyle V\, =\, \pi r^2 h\)

\(\displaystyle \mbox{Surface area: }\, 2 \pi r h\, 2 \pi r^2\, =\, 400\)

\(\displaystyle V\, =\, \pi r^2\, \left(\dfrac{400\, -\, 2 \pi r^2}{2 \pi r}\right)\)

\(\displaystyle V\, =\, r\, \left(\dfrac{400\, -\, 2 \pi r^2}{2}\right)\)

\(\displaystyle V\, =\, r\, (200\, -\, \pi r^2)\)

\(\displaystyle V\, =\, 200r\, -\, \pi r^2\)

\(\displaystyle \dfrac{dV}{dr}\, =\, 200\, -\, 2 \pi r\)

\(\displaystyle 200\, -\, 2 \pi r\, =\, 0\)

\(\displaystyle 200\, =\, 2 \pi r\)

\(\displaystyle \dfrac{200}{2 \pi}\, =\, r\)

\(\displaystyle r\, =\, 31.83\)

\(\displaystyle \dfrac{d^2V}{dr^2}\, =\, 0\, -\, 2 \pi\)
 
Last edited by a moderator:
5. A closed cylindrical container has a surface area of 400 cm2. Determine the dimensions of maximum volume.

S = 400 = \(\displaystyle 2 * \pi * r * h + 2 * \pi *r^2\)

h = \(\displaystyle \dfrac{400 - 2 * \pi *r^2}{2 * \pi * r}\)

V = \(\displaystyle \pi *r^2 * h\)

Now continue....
 
Last edited by a moderator:
Top