eatfish521
New member
- Joined
- Dec 13, 2015
- Messages
- 1
\(\displaystyle \mbox{1. Compute the integral: }\, \)\(\displaystyle \displaystyle \int_e^{e^4}\, \)\(\displaystyle \dfrac{1}{x\, \cdot\, \ln(x)}\, dx\)
\(\displaystyle \mbox{2. Find the derivative of the function: }\, f(x)\,=\, \)\(\displaystyle \displaystyle \int_{e^x}^0\, \left(\sin(t)\right)^2\, dt\)
\(\displaystyle \mbox{3. Estimate the area under the graph of }\, f(x)\, =\, 1\, +\, x^2\, \mbox{ from }\, x\, =\, -1\, \mbox{ to }\, x\, =\, 3,\,\)\(\displaystyle \mbox{ using four rectangles and right endpoints.}\)
\(\displaystyle \mbox{4. Find }\, f(x)\, \mbox{ if }\, \dfrac{d^2 f}{dx^2}\, =\, 6\, -\, 18\, \cdot\, x,\, f(0)\, =\, 6,\, \mbox{ and }\, f(2)\, =\, 12.\)
\(\displaystyle \mbox{5. Find the total area between the curve }\, y\, =\, x^2\, -\, 2\, \cdot\, x\, \mbox{ and the }\, x-\mbox{axis on the interval }\, \left[1,\, 3\right].\)
\(\displaystyle \mbox{6. Find }\, \)\(\displaystyle \displaystyle \int_{-2}^2\, \left(2\, \cdot\, f(x)\, +\, 3\, \cdot\, g(x)\right)\, dx \mbox{ if }\, f(x)\, \mbox{ is an even function such that }\) \(\displaystyle \displaystyle \int_0^2\, f(x)\, dx\, =\, 3,\, \mbox{ and }\, g(x)\, \mbox{ is such that }\, \)\(\displaystyle \displaystyle \int_{-2}^4\, g(x)\, dx\, =\, -3\, \mbox{ and }\,\)\(\displaystyle \displaystyle \int_2^4\, g(x)\, dx\, =\, -6\)
Could somebody help me to solve those questions? Thanks so much!
\(\displaystyle \mbox{2. Find the derivative of the function: }\, f(x)\,=\, \)\(\displaystyle \displaystyle \int_{e^x}^0\, \left(\sin(t)\right)^2\, dt\)
\(\displaystyle \mbox{3. Estimate the area under the graph of }\, f(x)\, =\, 1\, +\, x^2\, \mbox{ from }\, x\, =\, -1\, \mbox{ to }\, x\, =\, 3,\,\)\(\displaystyle \mbox{ using four rectangles and right endpoints.}\)
\(\displaystyle \mbox{4. Find }\, f(x)\, \mbox{ if }\, \dfrac{d^2 f}{dx^2}\, =\, 6\, -\, 18\, \cdot\, x,\, f(0)\, =\, 6,\, \mbox{ and }\, f(2)\, =\, 12.\)
\(\displaystyle \mbox{5. Find the total area between the curve }\, y\, =\, x^2\, -\, 2\, \cdot\, x\, \mbox{ and the }\, x-\mbox{axis on the interval }\, \left[1,\, 3\right].\)
\(\displaystyle \mbox{6. Find }\, \)\(\displaystyle \displaystyle \int_{-2}^2\, \left(2\, \cdot\, f(x)\, +\, 3\, \cdot\, g(x)\right)\, dx \mbox{ if }\, f(x)\, \mbox{ is an even function such that }\) \(\displaystyle \displaystyle \int_0^2\, f(x)\, dx\, =\, 3,\, \mbox{ and }\, g(x)\, \mbox{ is such that }\, \)\(\displaystyle \displaystyle \int_{-2}^4\, g(x)\, dx\, =\, -3\, \mbox{ and }\,\)\(\displaystyle \displaystyle \int_2^4\, g(x)\, dx\, =\, -6\)
Could somebody help me to solve those questions? Thanks so much!
Last edited by a moderator: