compute the limit lim x→∞ (x^2+x)^0.5 − (x^2 − x)^0.5

hndalama

Junior Member
Joined
Sep 26, 2016
Messages
74
lim x→∞ (x2+x)0.5 − (x2 − x)0.5

My attempt is to try using L'Hopital's rule by converting it to a fraction by multiplying it by [(x2+x)0.5 + (x2 − x)0.5] / [(x2+x)0.5 + (x2 − x)0.5]
when i do this I get 2x / [(x2+x)0.5 + (x2 − x)0.5] but using L'Hopital's rule seems to make the limit more complicated instead of less.
 
\(\displaystyle \lim_{x\to \infty}\frac{2x}{\sqrt{x^2+x}+\sqrt{x^2+x}}=\lim_{x\to \infty}\frac{2x}{\sqrt{x}(\sqrt{x+1}+\sqrt{x+1})}=\lim_{x\to \infty}\frac{2x}{\sqrt{x}(\sqrt{x}+\sqrt{x})}=\lim_{x\to \infty}\frac{2x}{\sqrt{x}\cdot 2\sqrt{x}}=1\)
 
\(\displaystyle \lim_{x\to \infty}\frac{2x}{\sqrt{x^2+x}+\sqrt{x^2+x}}=\lim_{x\to \infty}\frac{2x}{\sqrt{x}(\sqrt{x+1}+\sqrt{x+1})}=\lim_{x\to \infty}\frac{2x}{\sqrt{x}(\sqrt{x}+\sqrt{x})}=\lim_{x\to \infty}\frac{2x}{\sqrt{x}\cdot 2\sqrt{x}}=1\)

Thanks for your help ;)
 
Last edited:
The denominator is not (x2+x)0.5 + (x2 + x)0.5 It is (x2+x)0.5 + (x2 - x)0.5
It is the same process. You can go ahead and get the correct result and sahre your answer with us.
 
Top