Integral Problem: u-substitution for int [1/(2x + 1)] dx using u = 2x + 1

Vulcan

New member
Joined
Mar 4, 2016
Messages
38
Trying to find the following integral, any pointers?



. . . . .\(\displaystyle \displaystyle \int\, \dfrac{1}{2x\, +\, 1}\, dx\)

. . . . .Let u = 2x + 1; then \(\displaystyle \,\dfrac{du}{dx}\, =\, 2,\, \) so \(\displaystyle \, du\, =\, 2\, dx\)

. . . . .\(\displaystyle \displaystyle \int\, \dfrac{1}{u}\, dx\)

. . . . .I know it needs to be:

. . . . .\(\displaystyle \displaystyle \int\, \dfrac{1}{u}\, du\)

. . . . .but not sure how to get there.



Thanks in advance for any assistance.
 

Attachments

  • Screen Shot 2017-01-11 at 20.03.25.jpg
    Screen Shot 2017-01-11 at 20.03.25.jpg
    12.3 KB · Views: 4
Last edited by a moderator:
Trying to find the following integral, any pointers?



. . . . .\(\displaystyle \displaystyle \int\, \dfrac{1}{2x\, +\, 1}\, dx\)

. . . . .Let u = 2x + 1; then \(\displaystyle \,\dfrac{du}{dx}\, =\, 2,\, \) so \(\displaystyle \, du\, =\, 2\, dx\)

. . . . .\(\displaystyle \displaystyle \int\, \dfrac{1}{u}\, dx\). . .Incorrect

. . . . .I know it needs to be:

. . . . .\(\displaystyle \displaystyle \int\, \dfrac{1}{u}\, du\)

. . . . .but not sure how to get there.



Thanks in advance for any assistance.

\(\displaystyle \displaystyle {\int \dfrac{1}{2x+1}dx \ = \ \int \dfrac{1}{u}\frac{du}{2} \ = \ \frac{1}{2}\int \dfrac{1}{u}du}\)
 
Last edited by a moderator:
Top