W Wandoes New member Joined Sep 17, 2017 Messages 1 Sep 17, 2017 #1 2) (sqrt(6 - x) - 2)\/(sqrt(3 - x) - 1) = 1\/2" title="lim_(x->2) (sqrt(6 - x) - 2)/(sqrt(3 - x) - 1) = 1/2" data-attribution=""> I know
2) (sqrt(6 - x) - 2)\/(sqrt(3 - x) - 1) = 1\/2" title="lim_(x->2) (sqrt(6 - x) - 2)/(sqrt(3 - x) - 1) = 1/2" data-attribution=""> I know
tkhunny Moderator Staff member Joined Apr 12, 2005 Messages 11,325 Sep 17, 2017 #2 Does it help to ponder whether the expression is continuous AT x = 2?
L lookagain Elite Member Joined Aug 22, 2010 Messages 3,249 Sep 18, 2017 #3 Wandoes said: 2) (sqrt(6 - x) - 2)\/(sqrt(3 - x) - 1) = 1\/2" title="lim_(x->2) (sqrt(6 - x) - 2)/(sqrt(3 - x) - 1) = 1/2" data-attribution=""> I know Click to expand... If you wanted to use conjugates of the numerator and the denominator, you could begin with these steps: \(\displaystyle \displaystyle\lim_{x\to \ 2} \ \dfrac{\sqrt{6 - x} \ - \ 2}{\sqrt{3 - x} \ - \ 1} \ = \) \(\displaystyle \displaystyle\lim_{x\to \ 2} \ \dfrac{(\sqrt{6 - x} \ - \ 2)(\sqrt{6 - x} \ + \ 2)(\sqrt{3 - x} \ + \ 1)}{(\sqrt{3 - x} \ - \ 1 )(\sqrt{6 - x} \ + \ 2)(\sqrt{3 - x} \ + \ 1)} \ = \) \(\displaystyle \displaystyle\lim_{x\to \ 2} \ \dfrac{(\sqrt{6 - x} \ - \ 2)(\sqrt{6 - x} \ + \ 2)(\sqrt{3 - x} \ + \ 1)}{(\sqrt{3 - x} \ - \ 1 )(\sqrt{3 - x} \ + \ 1)(\sqrt{6 - x} \ + \ 2)} \ = \)
Wandoes said: 2) (sqrt(6 - x) - 2)\/(sqrt(3 - x) - 1) = 1\/2" title="lim_(x->2) (sqrt(6 - x) - 2)/(sqrt(3 - x) - 1) = 1/2" data-attribution=""> I know Click to expand... If you wanted to use conjugates of the numerator and the denominator, you could begin with these steps: \(\displaystyle \displaystyle\lim_{x\to \ 2} \ \dfrac{\sqrt{6 - x} \ - \ 2}{\sqrt{3 - x} \ - \ 1} \ = \) \(\displaystyle \displaystyle\lim_{x\to \ 2} \ \dfrac{(\sqrt{6 - x} \ - \ 2)(\sqrt{6 - x} \ + \ 2)(\sqrt{3 - x} \ + \ 1)}{(\sqrt{3 - x} \ - \ 1 )(\sqrt{6 - x} \ + \ 2)(\sqrt{3 - x} \ + \ 1)} \ = \) \(\displaystyle \displaystyle\lim_{x\to \ 2} \ \dfrac{(\sqrt{6 - x} \ - \ 2)(\sqrt{6 - x} \ + \ 2)(\sqrt{3 - x} \ + \ 1)}{(\sqrt{3 - x} \ - \ 1 )(\sqrt{3 - x} \ + \ 1)(\sqrt{6 - x} \ + \ 2)} \ = \)