Algebra Problem of The Day - 5

BigBeachBanana

Senior Member
Joined
Nov 19, 2021
Messages
2,277
x1x+11x=x\large \sqrt{x-\frac{1}{x}} + \sqrt{1-\frac{1}{x}}=xSolve for x.\large x.
 
Just wondering ... Is one of the minus signs meant to be a plus?
I tripled-checked before I post...considering the number of mistakes I've been making. The OP is correct. It is a tougher one but can be solved algebraically. Here are some hints.

Conjugate
System of 2 equations
 
I spent a good part of today working on this problem. The two hints helped

Clearly x>1

x1x+11x=x\displaystyle \sqrt{x-\dfrac{1}{x}}+ \sqrt{1-\dfrac{1}{x}} = x

Multiplying by conjugate yields x1=x(x1x11x)\displaystyle x-1 = x(\sqrt{x-\dfrac{1}{x}}- \sqrt{1-\dfrac{1}{x}}) or 11x=x1x11x\displaystyle 1-\dfrac{1}{x}=\sqrt{x-\dfrac{1}{x}}- \sqrt{1-\dfrac{1}{x}}

Adding the 2 eqs yields x+11x=2x1x\displaystyle x+1- \dfrac{1}{x} = 2\sqrt{x-\dfrac{1}{x}}

Let u=x1x\displaystyle u = x-\dfrac{1}{x}

Then u+1=2u\displaystyle u+1 = 2\sqrt u
....
u=1\displaystyle u=1, a double root
x1x=1\displaystyle x - \dfrac {1}{x} = 1
...
1+52\displaystyle \dfrac{1+\sqrt 5}{2}
 
Last edited:
IMG_1161.jpg
You can't say that I didn't try. Besides in the end I got it! @Subhotosh Khan- do I get my long awaited raise now??
To the few who already knew how to do this problem thanks for not posting the solution.
 
For the existence of the square roots x[1,0)[1,)x\in[-1,0)\cup[1,\infty)But the right hand member must be pozitive, so x[1,)x\in[1,\infty)The equation can be written as
x21x+x1x=xx21+x1=xxx2+x2+2x3x2x+1=x32x3x2x+1=(x3x2x+1)+1\sqrt{\frac{x^2-1}{x}}+\sqrt{\frac{x-1}{x}}=x\Leftrightarrow \sqrt{x^2-1}+\sqrt{x-1}=x\sqrt{x}\Leftrightarrow\\ \Leftrightarrow x^2+x-2+2\sqrt{x^3-x^2-x+1}=x^3\Leftrightarrow 2\sqrt{x^3-x^2-x+1}=\left(x^3-x^2-x+1\right)+1Let x3x2x+1=t\sqrt{x^3-x^2-x+1}=tThen t22t+1=0(t1)2=0t=1t^2-2t+1=0\Leftrightarrow (t-1)^2=0\Leftrightarrow t=1Then x3x2x+1=1x3x2x=0x2x1=0\sqrt{x^3-x^2-x+1}=1\Leftrightarrow x^3-x^2-x=0\Leftrightarrow x^2-x-1=0The solutions are x1.2=1±52x_{1.2}=\frac{1\pm\sqrt{5}}{2}But x[1,)x\in[1,\infty)so x=1+52x=\frac{1+\sqrt{5}}{2}
 
x21x+x1x=xx21+x1=xxx2+x2+2x3x2x+1=x32x3x2x+1=(x3x2x+1)+1\sqrt{\frac{x^2-1}{x}}+\sqrt{\frac{x-1}{x}}=x\Leftrightarrow \sqrt{x^2-1}+\sqrt{x-1}=x\sqrt{x}\Leftrightarrow\\ \Leftrightarrow x^2+x-2+2\sqrt{x^3-x^2-x+1}=x^3\Leftrightarrow 2\sqrt{x^3-x^2-x+1}=\left(x^3-x^2-x+1\right)+1
I actually had done exactly what you did but I failed to let t= x3x2x+1\displaystyle \sqrt{x^3-x^2-x+1}
In the corner again!
 
Top