Hello all!
Can somebody please explain the following aspect of the added problem: 'b^{t} dimension q x 1'
This problem is about creating the greatest utilization of available resources within an organization.
. . .\(\displaystyle \displaystyle \mbox{max}\, \sum_j\, c_j\,x_j\)
. . . . .\(\displaystyle \mbox{subject to }\, R^t\ \underline{x}\, \leq\, \underline{b^t}\)
. . . . . . .\(\displaystyle \mbox{with }\, x_j\, \in\, \{0,\, 1\}\)
Also:
. . . . .\(\displaystyle \displaystyle b_i^t\, :\, \mbox{resource }\, i\, \mbox{ available at time }\, t;\)
. . . . . . . . .\(\displaystyle b^t\, \mbox{ dimension }\, q\, \times\, 1\)
. . . . .\(\displaystyle \displaystyle c_j\, =\, \sum_{i=1}^q\, r_{ij}\)
. . . . .\(\displaystyle \displaystyle r_{ij}\, :\, \mbox{resource }\, i\, \mbox{ required by }\, a_j\)
. . . . .\(\displaystyle \displaystyle R^t\, :\, \mbox{matrix of resources req'd by all }\, a_j\,\)
. . . . . . . . .\(\displaystyle \displaystyle \mbox{which can be scheduled at time }\, t.\)
Thanks in advance!!!
Can somebody please explain the following aspect of the added problem: 'b^{t} dimension q x 1'
This problem is about creating the greatest utilization of available resources within an organization.
. . .\(\displaystyle \displaystyle \mbox{max}\, \sum_j\, c_j\,x_j\)
. . . . .\(\displaystyle \mbox{subject to }\, R^t\ \underline{x}\, \leq\, \underline{b^t}\)
. . . . . . .\(\displaystyle \mbox{with }\, x_j\, \in\, \{0,\, 1\}\)
Also:
. . . . .\(\displaystyle \displaystyle b_i^t\, :\, \mbox{resource }\, i\, \mbox{ available at time }\, t;\)
. . . . . . . . .\(\displaystyle b^t\, \mbox{ dimension }\, q\, \times\, 1\)
. . . . .\(\displaystyle \displaystyle c_j\, =\, \sum_{i=1}^q\, r_{ij}\)
. . . . .\(\displaystyle \displaystyle r_{ij}\, :\, \mbox{resource }\, i\, \mbox{ required by }\, a_j\)
. . . . .\(\displaystyle \displaystyle R^t\, :\, \mbox{matrix of resources req'd by all }\, a_j\,\)
. . . . . . . . .\(\displaystyle \displaystyle \mbox{which can be scheduled at time }\, t.\)
Thanks in advance!!!
Attachments

24.3 KB Views: 3
Last edited by a moderator: