-
New Member
Steps showing (x^y)*((1-x)^(1-y))=((x/(1-x))^y)*(1-x)=(e^(zy))/(1+e^z)
Working on demonstration that the binomial distribution can be expressed in generic exponential form.
But having trouble with intermediate algebra steps to show (where z=log(x/(1-x))
(x^y)*((1-x)^(1-y))
=((x/(1-x))^y)*(1-x)
=(e^(zy))/(1+e^z)
Can someone fill me in?
-
Elite Member
Hello, lumi!
Working on demonstration that the binomial distribution can be expressed in generic exponential form.
But having trouble with intermediate algebra steps, where .[tex]e^z \,=\,\dfrac{x}{1-x}[/tex]
[tex]x^y(1-x)^{1-y} \;=\;\left(\dfrac{x}{1-x}\right)^y\cdot(1-x) \;=\;\dfrac{e^{zy}}{1+e^z}[/tex]
Can someone fill me in?
[tex]\displaystyle x^y(1-x)^{1-y} \;=\;x^y\cdot (1-x)^1
\cdot(1-x)^{-y} \;=\; x^y\cdot(1-x)\cdot\dfrac{1}{(1-x)^y} [/tex]
. . . . . . . . . . [tex]=\;\dfrac{x^y}{(1-x)^y}\cdot(1-x) \;=\;\left(\dfrac{x}{1-x}\right)^y\cdot(1-x) [/tex] .[1]
Let [tex]\color{blue}{\dfrac{x}{1-x} \:=\:e^z} \quad\Rightarrow\quad x \:=\:e^z(1-x) \quad\Rightarrow \quad x \:=\:e^z - xe^z [/tex]
. . [tex]x + xe^z \:=\:e^z \quad\Rightarrow\quad x(1+e^z) \:=\:e^z \quad\Rightarrow\quad x \:=\:\dfrac{e^z}{1+e^z} [/tex]
. . [tex]1-x \:=\:1 - \dfrac{e^z}{1+e^z} \quad\Rightarrow\quad \color{blue}{1 - x \:=\:\dfrac{1}{1+e^z}}[/tex]
Substitute into [1]: .[tex](e^z)^y\cdot\dfrac{1}{1+e^z} \;=\;\dfrac{e^{zy}}{1+e^z}
[/tex]
-
New Member
Posting Permissions
- You may not post new threads
- You may not post replies
- You may not post attachments
- You may not edit your posts
-
Forum Rules
Bookmarks