a few questions involving logs, limits, and minimums

G

Guest

Guest
I dont remember how to do this:

1) Solve the folowing: log<sub>4</sub>(x + 2)+log<sub>4</sub>(x - 3) = log<sub>4</sub>(9)

2) Evaluate the limit if it exists:

. . .lim<sub>x->a</sub> [(x + a)<sup>2</sup>/(x<sup>2</sup> + a<sup>2</sup>)]

The varible is throwing me off.

3) A cereal box in the shape of a rectangular prism is required to have a capacity of 5000 cm<sup>3</sup>. The thickness of the box must be 10 cm to allow for a comfortable grasp by most people. What dimensions of the box require the minimum amount of material? Ignore any overlap needed to join the faces of the box.

I know that the surface area is given by A = 2Lw + 2Lh + 2wh

The volume is V = Lwh

Is the "10 cm" the width?

V = 5000 cm<sup>3</sup>

How do you find the other two lengths?

Thanks for the help!
 
log4(x+2)+log4(x3)=log4(9)\displaystyle log_4(x+2) + log_4(x-3) = log_4(9)
log4[(x+2)(x3)]=log4(9)\displaystyle log_4[(x+2)(x-3)] = log_4(9)
(x+2)(x3)=9\displaystyle (x+2)(x-3) = 9
can you take it from here? ... don't forget to check your solutions in the original equation.


limx-->a [(x+a)^2/(x^2+a^2)]
what's the problem? ... straight plug-in "a" for x
(a+a)^2/(a^2 + a^2) = 4a^2/2a^2 = 2


the cereal box problem ...

5000 = LWH , let W = "thickness" of 10 cm
so ...
5000 = L(10)H
500 = LH

A = 2LW + 2LH + 2WH
A = 20L + 2(500) + 20H
A = 20L + 1000 + 20H

since 500 = LH, H = 500/L ...

A = 20L + 1000 + 20(500/L) = 20L + 1000 + 10000/L

find dA/dL and minimize
 
Hello, bittersweet!

Here's #3 . . .

3) A cereal box in the shape of a rectangular prism is required to have a capacity of 5000 cm³.
The width of the box must be 10 cm to allow for a comfortable grasp by most people.
What dimensions of the box require the minimum amount of material?
(Ignore any overlap needed to join the faces of the box.)
Code:
                     L
              * - - - - - - *
            /             / |
        10/             /   |
        /             /     |
      * - - - - - - *       |
      |             |       | H
      |             |       |
      |             |       |
    H |             |       |
      |             |       *
      |             |     /
      |             |   /10
      |             | / 
      * - - - - - - *
             L
The volume is: V=L×W×H\displaystyle V\:=\:L\,\times\,W\,\times\,H
So we have: L×10×H=5000        H=500L  \displaystyle \,L\,\times\,10\,\times\,H\:=\:5000\;\;\Rightarrow\;\;H\,=\,\frac{500}{L}\; [1]

Area of the front and back: 2×LH  =  2LH\displaystyle \,2\,\times LH\;=\;2LH

Area of left and right: 2×10H  =  20H\displaystyle \,2\,\times 10H\;=\;20H

Area of top and bottom: 2×10L  =  20L\displaystyle \,2\,\times 10L\;=\;20L

    \displaystyle \;\;Total area: A  =  20L+20H+2LH\displaystyle \,A\;=\;20L\,+\,20H\,+\,2LH

Substitute [1]: A  =  20:+29(500L)+2L(500L)\displaystyle \,A\;=\;20:\,+\,29\left(\frac{500}{L}\right)\,+\,2L\left(\frac{500}{L}\right)

    \displaystyle \;\;and we have: A  =  20L+10,000L1+1000\displaystyle \,A\;=\;20L\,+\,10,000L^{-1}\,+\,1000


Differentiate and equate to zero: A  =  2010,000L2  =  0\displaystyle \,A'\;=\;20\,-\,10,000L^{-2}\;=\;0

Multiply by L2:    20L210,000=0        L2=500        L=105\displaystyle L^2:\;\;20L^2\,-\,10,000\:=\:0\;\;\Rightarrow\;\;L^2\:=\:500\;\;\Rightarrow\;\;L\,=\,10\sqrt{5}

From [1]: H=500105=105\displaystyle \,H\:=\:\frac{500}{10\sqrt{5}}\:=\:10\sqrt{5}


Therefore: L=105,    W=10,    H=105\displaystyle \,L\,=\,10\sqrt{5},\;\;W\,=\,10 ,\;\;H\,=\,10\sqrt{5}
 
Top