A math competition problem (Limits)

ηωγΙ

New member
Joined
Nov 11, 2019
Messages
2
My friend at school showed me some math competition problems, and a specific problem caught my eye:
Evaluate this limit: [MATH]\lim_{x\to 0} \left(\frac{\sqrt{1+\sin^2 x^2} - \cos^3 x^2}{x^3 \tan x}\right)[/MATH]
So, i decided to try and answer the problem. After a few hours, i've found a solution for it, but i feel a bit unsure. Here's my solution:
[MATH]\rightarrow[/MATH] Using L'Hopital's rule,

=[MATH]\lim_{x\to 0} \left(\frac{\frac{2x\sin x^2\cos x^2}{\sqrt{1+\sin^2 x^2}} + 6x\cos^2 x^2 \sin x^2}{3x^2 \tan x + x^3\sec^2 x}\right)[/MATH][MATH]\rightarrow[/MATH]Since [MATH]\sin 2x = 2\sin x \cos x[/MATH], Then [MATH]\sin 2x^2 = 2\sin x^2 \cos x^2[/MATH]
=[MATH]\lim_{x\to 0} \left(\frac{\frac{x\sin 2x^2}{\sqrt{1+\sin^2 x^2}} + 3x\sin 2x^2 \cos x^2 }{3x^2 \tan x + \frac{x^3}{\cos^2 x}}\right)[/MATH][MATH]\rightarrow[/MATH][MATH]\cos^2 x = 1 - \sin^2 x[/MATH]
=[MATH]\lim_{x\to 0} \left(\frac{\frac{x\sin 2x^2}{\sqrt{1+\sin^2 x^2}} + 3x\sin 2x^2 \cos x^2 }{3x^2 \tan x + \frac{x^3}{1 - \sin^2 x}}\right)[/MATH][MATH]\rightarrow[/MATH]Trigonometric limit properties,

=[MATH]\lim_{x\to 0} \left(\frac{\frac{x\sin 2x^2}{\sqrt{(1+\sin^2 x^2) . (\frac{x^4}{x^4})}}. (\frac{2x^2}{2x^2}) + 3x\sin 2x^2 \cos x^2 . (\frac{2x^2}{2x^2}) }{3x^2 \tan x . (\frac{x}{x}) + \frac{x^3}{1 - \sin^2 x . (\frac{x^2}{x^2})}}\right)[/MATH]= [MATH]\lim_{x\to 0} \left(\frac{\frac{2x^3}{\sqrt{1+ x^4}} + 6x^3 \cos x^2 }{3x^3 + \frac{x^3}{1 - x^2}}\right)[/MATH], Algebra:

=[MATH]\lim_{x\to 0} \left(\frac{\frac{2x^3\sqrt{1+x^4}}{1+ x^4} + 6x^3 \cos x^2 }{\frac{3x^3(1-x^2) + x^3}{1 - x^2}}\right)[/MATH]= [MATH]\lim_{x\to 0} \left(\frac{\frac{2x^3\sqrt{1+x^4}+6x^3\cos x^2(1+x^4)}{1+x^4}}{\frac{3x^3(1-x^2) + x^3}{1 - x^2}}\right)[/MATH]= [MATH]\lim_{x\to 0} \left(\frac{\frac{x^3\bigl(2\sqrt{1+x^4}+6\cos x^2(1+x^4)\bigr)}{1+x^4}}{\frac{x^3\bigl(3(1-x^2) + 1 \bigr)}{1 - x^2}}\right)[/MATH]
[MATH]\rightarrow[/MATH] [MATH]x^3[/MATH] cancels, we're left with:

[MATH]\lim_{x\to 0} \left(\frac{\frac{(2\sqrt{1+x^4}+6\cos x^2(1+x^4))}{1+x^4}}{\frac{3(1-x^2) + 1}{1 - x^2}}\right)[/MATH]
[MATH]\rightarrow[/MATH]Now, we plug in [MATH]x = 0[/MATH], result:

[MATH]\left(\frac{\frac{(2\sqrt{1+0^4}+6\cos 0^2(1+0^4))}{1+0^4}}{\frac{3(1-0^2) + 1}{1 - 0^2}}\right)[/MATH]= [MATH]\frac{2+6}{3+1}[/MATH]= [MATH]\frac{8}{4}[/MATH]= [MATH]2[/MATH]
This is how i first got the answer. messy work, i know.
Now that i think about it, i could've changed some unnecessary steps here and there, and it would've looked cleaner.
But still, i don't know if this answer is correct or not, so that's why i'm asking here. If somebody find any mistakes, please let me know.

PS - i'm in my last year of high school, and English is not my native language, so bear with me if i don't understand some mathematical terms.
 
Last edited:
My friend at school showed me some math competition problems, and a specific problem caught my eye:
Evaluate this limit: [MATH]\lim_{x\to 0} \left(\frac{\sqrt{1+\sin^2 x^2} - \cos^3 x^2}{x^3 \tan x}\right)[/MATH]
So, i decided to try and answer the problem. After a few hours, i've found a solution for it, but i feel a bit unsure. Here's my solution:
[MATH]\rightarrow[/MATH] Using L'Hopital's rule,

=[MATH]\lim_{x\to 0} \left(\frac{\frac{2x\sin x^2\cos x^2}{\sqrt{1+\sin^2 x^2}} + 6x\cos^2 x^2 \sin x^2}{3x^2 \tan x + x^3\sec^2 x}\right)[/MATH][MATH]\rightarrow[/MATH]Since [MATH]\sin 2x = 2\sin x \cos x[/MATH], Then [MATH]\sin 2x^2 = 2\sin x^2 \cos x^2[/MATH]
=[MATH]\lim_{x\to 0} \left(\frac{\frac{x\sin 2x^2}{\sqrt{1+\sin^2 x^2}} + 3x\sin 2x^2 \cos x^2 }{3x^2 \tan x + \frac{x^3}{\cos^2 x}}\right)[/MATH][MATH]\rightarrow[/MATH][MATH]\cos^2 x = 1 - \sin^2 x[/MATH]
=[MATH]\lim_{x\to 0} \left(\frac{\frac{x\sin 2x^2}{\sqrt{1+\sin^2 x^2}} + 3x\sin 2x^2 \cos x^2 }{3x^2 \tan x + \frac{x^3}{1 - \sin^2 x}}\right)[/MATH][MATH]\rightarrow[/MATH]Trigonometric limit properties,

=[MATH]\lim_{x\to 0} \left(\frac{\frac{x\sin 2x^2}{\sqrt{(1+\sin^2 x^2) . (\frac{x^4}{x^4})}}. (\frac{2x^2}{2x^2}) + 3x\sin 2x^2 \cos x^2 . (\frac{2x^2}{2x^2}) }{3x^2 \tan x . (\frac{x}{x}) + \frac{x^3}{1 - \sin^2 x . (\frac{x^2}{x^2})}}\right)[/MATH]= [MATH]\lim_{x\to 0} \left(\frac{\frac{2x^3}{\sqrt{1+ x^4}} + 6x^3 \cos x^2 }{3x^3 + \frac{x^3}{1 - x^2}}\right)[/MATH], Algebra:

=[MATH]\lim_{x\to 0} \left(\frac{\frac{2x^3\sqrt{1+x^4}}{1+ x^4} + 6x^3 \cos x^2 }{\frac{3x^3(1-x^2) + x^3}{1 - x^2}}\right)[/MATH]= [MATH]\lim_{x\to 0} \left(\frac{\frac{2x^3\sqrt{1+x^4}+6x^3\cos x^2(1+x^4)}{1+x^4}}{\frac{3x^3(1-x^2) + x^3}{1 - x^2}}\right)[/MATH]= [MATH]\lim_{x\to 0} \left(\frac{\frac{x^3\bigl(2\sqrt{1+x^4}+6\cos x^2(1+x^4)\bigr)}{1+x^4}}{\frac{x^3\bigl(3(1-x^2) + 1 \bigr)}{1 - x^2}}\right)[/MATH]
[MATH]\rightarrow[/MATH] [MATH]x^3[/MATH] cancels, we're left with:

[MATH]\lim_{x\to 0} \left(\frac{\frac{(2\sqrt{1+x^4}+6\cos x^2(1+x^4))}{1+x^4}}{\frac{3(1-x^2) + 1}{1 - x^2}}\right)[/MATH]
[MATH]\rightarrow[/MATH]Now, we plug in [MATH]x = 0[/MATH], result:

[MATH]\left(\frac{\frac{(2\sqrt{1+0^4}+6\cos 0^2(1+0^4))}{1+0^4}}{\frac{3(1-0^2) + 1}{1 - 0^2}}\right)[/MATH]= [MATH]\frac{2+6}{3+1}[/MATH]= [MATH]\frac{8}{4}[/MATH]= [MATH]2[/MATH]
This is how i first got the answer. messy work, i know.
Now that i think about it, i could've changed some unnecessary steps here and there, and it would've looked cleaner.
But still, i don't know if this answer is correct or not, so that's why i'm asking here. If somebody find any mistakes, please let me know.

PS - i'm in my last year of high school, and English is not my native language, so bear with me if i don't understand some mathematical terms.
looks good and pka's favorite website confirmed!
 
If you only have a calculator to work with (and you clearly don't as you have access to a computer) you can always evaluate the initial function at say .0000001 and see if you get close to 2.

In the end your work was excellent!
 
looks good and pka's favorite website confirmed!
Thanks! and what do you mean by, "pka's favorite website"?

If you only have a calculator to work with (and you clearly don't as you have access to a computer) you can always evaluate the initial function at say .0000001 and see if you get close to 2.

In the end your work was excellent!
Oh right! I forgot that i can do that, will do later. Thanks!
 
Top