Absolute extrema

yullin

New member
Joined
Mar 19, 2006
Messages
2
I really need help with this problem which says:

. . . . .Find the absolute extrema of the function:

. . . . . . . .f(x) = (3x) / sqrt[4x<sup>2</sup> + 1]

. . . . .on the interval [-1, 1].

I am stuck at:

. . . . . f'(x) = [(4x<sup>2</sup> + 1)<sup>1/2</sup>(3) - (3x)(1/2)(4x<sup>2</sup> + 1)<sup>-1/2</sup>(8x)] / (4x<sup>2</sup> + 1)

I dont know what to do next. PLEASE HELP!!!
 
Hello, yullin!

Find the absolute extreme of the function: \(\displaystyle \,f(x)\:=\:\frac{3x}{\sqrt{4x^2\,+\,1}}\) on the interval [-1,1].

I am stuck on: \(\displaystyle \,f'(x)\:=\:\frac{(4x^2+1)^{\frac{1}{2}}(3)\,-\,(3x)(\frac{1}{2})(4x^2+1)^{-\frac{1}{2}}(8x)}{4x^2\,+\,1}\)
I bet you do know what to do next . . . but the algebra stops you, right?

We have: \(\displaystyle \L\,f'(x)\:=\:\frac{3(4x^2+1)^{\frac{1}{2}}\,-\,12x(4x^2+1)^{-\frac{1}{2}}}{4x^2\,+\,1} \;= \;0\)


Multiply top and bottom by \(\displaystyle (4x^2+1)^{\frac{1}{2}}:\)

\(\displaystyle \L\;\;\frac{(4x^2+1)^{\frac{1}{2}}}{(4x^2+1)^{\frac{1}{2}}}\,\cdot\,\frac{3(4x^2+1)^{\frac{1}{2}}\,-\,12x(4x^2+1)^{-\frac{1}{2}}}{4x^2\,+\,1}\;=\;0\)


and we get: \(\displaystyle \L\:\frac{3(4x^2+1)\,-\,12x}{(4x^2\,+\,1)^{\frac{3}{2}}} \;=\;\frac{12x^2\,+\,3\,-\,12x}{(4x^2\,+\,1)^{\frac{3}{2}}} \;=\;\frac{3(4x^2\,-\,4x\,+\,1)}{(4x^2\,+\,1)^{\frac{3}{2}}\)

Then: \(\displaystyle \L\,\frac{3(2x\,-\,1)^2}{(4x^2\,+\,1)^{\frac{3}{2}}} \;=\;0\;\;\Rightarrow\;\;x\,=\,\frac{1}{2}\)


When \(\displaystyle x\,=\,\frac{1}{2},\;f\left(\frac{1}{2}\right)\;=\;\frac{3}{\sqrt{2}}{4}\;\approx\;1.06\)

Check the endpoints:
\(\displaystyle \L\;\;f(-1)\;=\;\frac{-3}{\sqrt{4\,+\,1}}\;=\;-\frac{3}{\sqrt{5}}\;\approx\;-1.34\;\) . . . absolute minimum
\(\displaystyle \L\;\;f(1)\;=\;\frac{3}\sqrt{4\,+\,1}}\;=\;\frac{3}{\sqrt{5}}\;\approx\;1.34\;\) . . . absolute maximum


Evidently, our critical value does not produce an extreme value.

[I checked it out with the second derivative . . . very messy!
There is a horizontal tangent at \(\displaystyle x\,=\,\frac{1}{2}\), but it's an inflection point.]

*
 
Top