\(\displaystyle \dfrac{dy}{dx} = \dfrac{x}{\sqrt{4x - x^{2}}}\)
\(\displaystyle \int dy = \int \dfrac{x}{\sqrt{4x - x^{2}}} dx\)
\(\displaystyle y = \int \dfrac{x}{\sqrt{4x - x^{2}}} dx\)
\(\displaystyle \int \dfrac{x}{\sqrt{4x - x^{2}}} dx\)
Converting to form:
\(\displaystyle \int \dfrac{du}{\sqrt{2au - u^{2}}} = \sin^{-1} \dfrac{u - a}{a}\) and \(\displaystyle \int u^{n} du = \dfrac{n^{n + 1}}{n + 1}\)
\(\displaystyle \int \dfrac{x}{\sqrt{4x - x^{2}}} dx = \dfrac{[2 - (2 -x)]}{\sqrt{4x - x^{2}}}dx\)
What is going on here.
\(\displaystyle 2 \int \dfrac{dx}{\sqrt{4x - x^{2}}} - \int \dfrac{(2 - x) dx}{\sqrt{4x - x^{2}}}\)
\(\displaystyle 2 \int \dfrac{2 dx}{\sqrt{4x - x^{2}}} - \int (4x - x^{2})^{-1/2} (2 - x) dx\)
\(\displaystyle u = 4x - x^{2}\)
\(\displaystyle du = 4 - 2x dx\)
\(\displaystyle \dfrac{1}{2}du = 2 - x dx\)
\(\displaystyle 2 \int \dfrac{2 dx}{\sqrt{4x - x^{2}}} - \dfrac{1}{2} \int (4x - x^{2})^{-1/2} (2 - x) dx\)
\(\displaystyle \rightarrow 2 \sin^{-1} \dfrac{x - 2}{2} - (\dfrac{1}{2}) \dfrac{u^{1/2}}{\dfrac{1}{2}} + C\)
\(\displaystyle \rightarrow 2 \sin^{-1} \dfrac{x - 2}{2} - (\dfrac{1}{2})(2) u^{1/2} + C\)
\(\displaystyle \rightarrow 2 \sin^{-1} \dfrac{x - 2}{2} - u^{1/2} + C\)
\(\displaystyle \rightarrow 2 \sin^{-1} \dfrac{x - 2}{2} - (4x - x^{2})^{1/2} + C\)
\(\displaystyle \int dy = \int \dfrac{x}{\sqrt{4x - x^{2}}} dx\)
\(\displaystyle y = \int \dfrac{x}{\sqrt{4x - x^{2}}} dx\)
\(\displaystyle \int \dfrac{x}{\sqrt{4x - x^{2}}} dx\)
Converting to form:
\(\displaystyle \int \dfrac{du}{\sqrt{2au - u^{2}}} = \sin^{-1} \dfrac{u - a}{a}\) and \(\displaystyle \int u^{n} du = \dfrac{n^{n + 1}}{n + 1}\)
\(\displaystyle \int \dfrac{x}{\sqrt{4x - x^{2}}} dx = \dfrac{[2 - (2 -x)]}{\sqrt{4x - x^{2}}}dx\)
\(\displaystyle 2 \int \dfrac{dx}{\sqrt{4x - x^{2}}} - \int \dfrac{(2 - x) dx}{\sqrt{4x - x^{2}}}\)
\(\displaystyle 2 \int \dfrac{2 dx}{\sqrt{4x - x^{2}}} - \int (4x - x^{2})^{-1/2} (2 - x) dx\)
\(\displaystyle u = 4x - x^{2}\)
\(\displaystyle du = 4 - 2x dx\)
\(\displaystyle \dfrac{1}{2}du = 2 - x dx\)
\(\displaystyle 2 \int \dfrac{2 dx}{\sqrt{4x - x^{2}}} - \dfrac{1}{2} \int (4x - x^{2})^{-1/2} (2 - x) dx\)
\(\displaystyle \rightarrow 2 \sin^{-1} \dfrac{x - 2}{2} - (\dfrac{1}{2}) \dfrac{u^{1/2}}{\dfrac{1}{2}} + C\)
\(\displaystyle \rightarrow 2 \sin^{-1} \dfrac{x - 2}{2} - (\dfrac{1}{2})(2) u^{1/2} + C\)
\(\displaystyle \rightarrow 2 \sin^{-1} \dfrac{x - 2}{2} - u^{1/2} + C\)
\(\displaystyle \rightarrow 2 \sin^{-1} \dfrac{x - 2}{2} - (4x - x^{2})^{1/2} + C\)
Last edited: