I've solved this problem in a very obtuse way, but I want to know if I'm missing something super obvious and there's an easier solution. I'm on quite a roll with this chapter as far as missing the obvious. The problem states:
My first step was to let \(\displaystyle a_k=\frac{\left(2k\right)!}{\left(k!\right)!}\). I then did the following:
\(\displaystyle \displaystyle ln\left(k!\right)=\sum _{x=1}^kln\left(x\right)\)
\(\displaystyle \displaystyle ln\left(k!\right)\ge \int _1^k\:ln\left(x\right)dx\)
\(\displaystyle ln\left(k!\right)\ge k\cdot ln\left(k\right)-k\)
\(\displaystyle k!\ge e^{k\cdot \:ln\left(k\right)}\cdot e^{-k}\)
\(\displaystyle k!\ge \frac{k^k}{e^k}\)
And from that, I have:
\(\displaystyle \frac{\left(2k\right)!}{\left(k!\right)!}\ge \frac{2k^{2k}}{e^{2k}}\cdot \frac{e^{k!}}{k!^{k!}}\)
So, I let \(\displaystyle b_k=\frac{2k^{2k}}{e^{2k}}\cdot \frac{e^{k!}}{k!^{k!}}\)
I have two series, such that ak > bk > 0 for all k >1 so I used the limit comparison test. But I first needed to prove that bk diverges, so I used the root test on it.
\(\displaystyle \displaystyle \lim _{k\to \infty }\left(\sqrt[k]{\frac{2k^{2k}}{e^{2k}}\cdot \frac{e^{k!}}{k!^{k!}}}\right)=\lim _{k\to \infty }\left(\sqrt[k]{\frac{2k^{2k}}{e^{2k}}}\cdot \sqrt[k]{\frac{e^{k!}}{k!^{k!}}}\right)\)
\(\displaystyle \displaystyle =\lim _{k\to \infty }\left(\frac{4k^2}{e^2}\cdot \sqrt[k]{\frac{e^{k!}}{k!^{k!}}}\right)\)
\(\displaystyle \displaystyle =\lim _{k\to \infty }\left(\frac{4k^2}{e^2}\right)\cdot \lim _{k\to \infty }\left(\sqrt[k]{\frac{e^{k!}}{k!^{k!}}}\right)\)
\(\displaystyle \displaystyle =\infty \cdot \lim _{k\to \infty }\left(\sqrt[k]{\frac{e^{k!}}{k!^{k!}}}\right)\)
The value of the second limit doesn't matter. Even if it goes to infinity, infinity times infinity is not an indeterminate form. Thus, by the root test, the series of bk diverges. And since the series of ak is greater than a divergent series, it too must diverge.
As I said above, my solution works... but I highly doubt that it's the intended solution. Can anyone provide insight into what I might have missed?
For exercise #41-59, determine if the series converges or diverges
51. \(\displaystyle \displaystyle \sum _{k=0}^{\infty }\frac{\left(2k\right)!}{\left(k!\right)!}\)
My first step was to let \(\displaystyle a_k=\frac{\left(2k\right)!}{\left(k!\right)!}\). I then did the following:
\(\displaystyle \displaystyle ln\left(k!\right)=\sum _{x=1}^kln\left(x\right)\)
\(\displaystyle \displaystyle ln\left(k!\right)\ge \int _1^k\:ln\left(x\right)dx\)
\(\displaystyle ln\left(k!\right)\ge k\cdot ln\left(k\right)-k\)
\(\displaystyle k!\ge e^{k\cdot \:ln\left(k\right)}\cdot e^{-k}\)
\(\displaystyle k!\ge \frac{k^k}{e^k}\)
And from that, I have:
\(\displaystyle \frac{\left(2k\right)!}{\left(k!\right)!}\ge \frac{2k^{2k}}{e^{2k}}\cdot \frac{e^{k!}}{k!^{k!}}\)
So, I let \(\displaystyle b_k=\frac{2k^{2k}}{e^{2k}}\cdot \frac{e^{k!}}{k!^{k!}}\)
I have two series, such that ak > bk > 0 for all k >1 so I used the limit comparison test. But I first needed to prove that bk diverges, so I used the root test on it.
\(\displaystyle \displaystyle \lim _{k\to \infty }\left(\sqrt[k]{\frac{2k^{2k}}{e^{2k}}\cdot \frac{e^{k!}}{k!^{k!}}}\right)=\lim _{k\to \infty }\left(\sqrt[k]{\frac{2k^{2k}}{e^{2k}}}\cdot \sqrt[k]{\frac{e^{k!}}{k!^{k!}}}\right)\)
\(\displaystyle \displaystyle =\lim _{k\to \infty }\left(\frac{4k^2}{e^2}\cdot \sqrt[k]{\frac{e^{k!}}{k!^{k!}}}\right)\)
\(\displaystyle \displaystyle =\lim _{k\to \infty }\left(\frac{4k^2}{e^2}\right)\cdot \lim _{k\to \infty }\left(\sqrt[k]{\frac{e^{k!}}{k!^{k!}}}\right)\)
\(\displaystyle \displaystyle =\infty \cdot \lim _{k\to \infty }\left(\sqrt[k]{\frac{e^{k!}}{k!^{k!}}}\right)\)
The value of the second limit doesn't matter. Even if it goes to infinity, infinity times infinity is not an indeterminate form. Thus, by the root test, the series of bk diverges. And since the series of ak is greater than a divergent series, it too must diverge.
As I said above, my solution works... but I highly doubt that it's the intended solution. Can anyone provide insight into what I might have missed?