Balloon problem

Zhowers

New member
Joined
Apr 17, 2019
Messages
4
So halfway through the problem I noticed that the problem could have been used as a law of cosines, and I feel like I might be wrong so far. I'm pretty stuck and would appreciate any help! Thank you.
 

Attachments

  • IMG_8513.JPG
    IMG_8513.JPG
    3.5 MB · Views: 15
Let the tension in the left rope be T1\displaystyle T_1 and the tension in the right rope be T2\displaystyle T_2. Draw a line straight down from the balloon. That divides the problem into two right triangles. On the left we have a hypotenuse of "length" T1\displaystyle T_1 and angle 60 degrees. The vertical component of force is T1sin(60)\displaystyle T_1 sin(60), downward, and horizontal component of force is T1cos(60)\displaystyle T_1 cos(60), to the left. On the right we have a hypotenuse of "length" T2\displaystyle T_2 and angle 25 degrees. The vertical component of force is T2sin(25)\displaystyle T_2 sin(25), downward, and horizontal component of force is T2cos(25)\displaystyle T_2 cos(25), to the right.

The total horizontal force must be 0: T1cos(60)=T2cos(25)\displaystyle T_1cos(60)= T_2cos(25). The total vertical force is also 0 but that exerted by the ropes must offset the upward lifting force, 570 pounds: T1sin(60)+T2sin(25)=570\displaystyle T_1sin(60)+ T_2sin(25)= 570. Solve those two linear equations for T1\displaystyle T_1 and T2\displaystyle T_2.
 
Top