Bearing and Triangles

IloveManUtd

New member
Joined
Jul 27, 2010
Messages
48
The diagram shows a point A which lies 9 km south of point B. The points C and D are both 6 km from B and the bearing of C from A is 036.3 degrees. The points A, C, D and E all lie on a straight line. Calculate angle ACB and the shortest distance from B to the line ACD.

In the second part of the question are they asking for a perpendicular line of B? Thanks.
 

Attachments

  • Untitled-12.jpg
    Untitled-12.jpg
    34 KB · Views: 89
IloveManUtd said:
In the second part of the question are they asking for a perpendicular line of B? Two points define a line, not one.

The shortest distance from B to the line AE is along the line perpendicular to AE passing through B.

In other words, pick a point between C and D, and call it F. Then, BF is shortest when it is perpendicular to CD.
 
Hello, IloveManUtd!

The diagram shows a point A\displaystyle A which lies 9 km south of point B\displaystyle B.
The points C\displaystyle C and D\displaystyle D are both 6 km from B\displaystyle B
and the bearing of C\displaystyle C from A\displaystyle A is 036.3 degrees.
The points A,C,D,E\displaystyle A , C, D, E are collinear.

Calculate: .(a) ACB\displaystyle \angle ACB
. . . . . . . (b) the shortest distance from B\displaystyle B to the line AE.\displaystyle AE.


Code:
    B o
      |* *                  E
      | *   *   6         *
      |  *     *        *
      |   *       *   *
      |  6 *        o
    9 |     *     *   D
      |      *  *
      |       o
      |36.3 *   C
      |   *
      | *
    A o

(a) Use the Law of Sines on ΔACB.\displaystyle \text{(a) Use the Law of Sines on }\Delta ACB.

. . . sin(ACB)9=sin36.3o6sin(ACB)=9sin36.3o6=0.888019768\displaystyle \frac{\sin(\angle ACB)}{9} \:=\:\frac{\sin36.3^o}{6} \quad\Rightarrow\quad \sin(\angle ACB) \:=\:\frac{9\sin36.3^o}{6} \:=\:0.888019768

. . Hence: ACB  =  62.625457O,  117.374543O\displaystyle \text{Hence: }\:\angle ACB \;=\;62.625457^O,\;117.374543^O

. . Since ACB is obviously obtuse: ACB    117.4o\displaystyle \text{Since }\angle ACB\text{ is obviously obtuse: }\:\angle ACB \;\approx\;117.4^o



(b) Let h=BF be the shortest distance from B to AE.\displaystyle \text{(b) Let }h = BF\text{ be the shortest distance from }B\text{ to }AE.

. . Then: BFAE.\displaystyle \text{Then: }\:BF \perp AE.

In right triangle BFA ⁣:    sin36.3o=h9\displaystyle \text{In right triangle }BFA\!:\;\;\sin 36.3^o \:=\:\frac{h}{9}

. . Therefore:   h  =  9sin36.3o  =  5.328118609    5.3 km.\displaystyle \text{Therefore: }\;h \;=\;9\sin36.3^o \;=\;5.328118609 \;\approx\;5.3\text{ km.}

 
Top