I don't even know to approach these problems! Please help!
Question 2: Suppose \(\displaystyle \dfrac{2}{1\, +\, 3x}\, =\, \)\(\displaystyle \displaystyle{ \sum_{n\, =\, 0}^{\infty}\, a_n\, x^n}\)
Find a3.
Question 3: Suppose \(\displaystyle \dfrac{x}{(1\, +\, 4x)^2}\, =\, \)\(\displaystyle \displaystyle{ \sum_{n\, =\, 0}^{\infty}\, a_n\, x^n}\)
Find a2.
Question 4: Suppose \(\displaystyle \int\, x^2\, \ln(1\, +\, x)\, dx\, =\, C\, +\,\)\(\displaystyle \displaystyle{ \sum_{n\, =\, 0}^{\infty}\, a_n\, x^n}\)
Find a4 and express your answer as a decimal.
Question 2: Suppose \(\displaystyle \dfrac{2}{1\, +\, 3x}\, =\, \)\(\displaystyle \displaystyle{ \sum_{n\, =\, 0}^{\infty}\, a_n\, x^n}\)
Find a3.
Question 3: Suppose \(\displaystyle \dfrac{x}{(1\, +\, 4x)^2}\, =\, \)\(\displaystyle \displaystyle{ \sum_{n\, =\, 0}^{\infty}\, a_n\, x^n}\)
Find a2.
Question 4: Suppose \(\displaystyle \int\, x^2\, \ln(1\, +\, x)\, dx\, =\, C\, +\,\)\(\displaystyle \displaystyle{ \sum_{n\, =\, 0}^{\infty}\, a_n\, x^n}\)
Find a4 and express your answer as a decimal.
Last edited by a moderator: