Calculus II

When we use the ratio test, we find the limit:

[MATH]L=\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|[/MATH]
The ratio test states that:
  • if L<1L<1 then the series converges absolutely;
  • if L<1L<1 then the series is divergent;
  • if L=1L=1 or the limit fails to exist, then the test is inconclusive, because there exist both convergent and divergent series that satisfy this case.
And so, because we require L<1L<1, the interval of convergence is necessarily open, that is, we do not include the end-points.
Thank you so much. But you put L<1 two times
 
MarkFL meant to write it is divergent if L>1

Recall that a necessary condition for convergence is that an-->0 as n--oo
Now if L>1, then an+1> an and therefore the (positive) terms are getting bigger and hence not approaching 0. So it diverges
That's how I remember the rules!
 
Last edited:
Top