Can anyone can help me ?

rainyrainy906

New member
Joined
Jan 3, 2015
Messages
1
\(\displaystyle \mbox{a) }\, \displaystyle{ \int\, \sqrt[3]{e^x\, -\, 1\, }\, dx }\)

\(\displaystyle \mbox{b) }\, \displaystyle{ \int\, \frac{\left(x^2\, +\, x\right)\, e^x}{x\, +\, e^{-x}}\, dx }\)

\(\displaystyle \mbox{c) }\, \displaystyle{ \int\, \frac{xe^x\, +\, 1}{x\left(e^x \, +\, \ln(x)\right)}\, dx }\)

Thank you :D
 
Last edited by a moderator:
\(\displaystyle \mbox{a) }\, \displaystyle{ \int\, \sqrt[3]{e^x\, -\, 1\, }\, dx }\)

\(\displaystyle \mbox{b) }\, \displaystyle{ \int\, \frac{\left(x^2\, +\, x\right)\, e^x}{x\, +\, e^{-x}}\, dx }\)

\(\displaystyle \mbox{c) }\, \displaystyle{ \int\, \frac{xe^x\, +\, 1}{x\left(e^x \, +\, \ln(x)\right)}\, dx }\)

Thank you :grin:

What are your thoughts?

If you are stuck at the beginning tell us and we'll start with the definitions.

Please share your work with us ... even if you know it is wrong

You need to read the rules of this forum. Please read the post titled "Read before Posting" at the following URL:

http://www.freemathhelp.com/forum/th...Before-Posting


Hint for 1)

substitute

ex - 1 = u3

3u2du = exdx

dx = 3u2/(u3 + 1) du ..... and continue....
 
Last edited by a moderator:
Top