Cant get to the next step.

Sonal7

Full Member
Joined
Oct 4, 2019
Messages
485
I am trying to get to the general solution for this DE and the Integrating factor is correct but dont seem to be able to think of the next step. I feel that there needs to be a 2 in front one of the Xs to make it a differential of x^2 e^x
Am i right?
 

Attachments

  • Screenshot 2019-11-24 at 09.41.53.png
    Screenshot 2019-11-24 at 09.41.53.png
    26.7 KB · Views: 2
  • 20191124_093727.jpg
    20191124_093727.jpg
    792.9 KB · Views: 3
An "integrating factor" for xdydx+(x+1)y\displaystyle x\frac{dy}{dx}+ (x+ 1)y is a function, u(x), such that d(u(x)xydx=uxdydx+(xdudx+u)y=u(xdydx+(x+1)y)=uxdydx+u(x+1)y\displaystyle \frac{d(u(x)xy}{dx}= ux\frac{dy}{dx}+ (x\frac{du}{dx}+ u)y= u(x\frac{dy}{dx}+ (x+ 1)y)= ux\frac{dy}{dx}+ u(x+ 1)y. That is, we must have dudx+xu=xu+u\displaystyle \frac{du}{dx}+ xu= xu+ u. dudx=u\displaystyle \frac{du}{dx}= u so u(x)=ex\displaystyle u(x)= e^x.

Checking, xexydx=exy+xexy+xexdydx=xexdydx+ex(x+1)y=ex(xdydx+(x+1)y)\displaystyle \frac{xe^xy}{dx}= e^xy+ xe^xy+ xe^x\frac{dy}{dx}= xe^x\frac{dy}{dx}+ e^x(x+1)y= e^x(x\frac{dy}{dx}+ (x+ 1)y).

Once you have that, ex(dydx+(x+1)y)=xex\displaystyle e^x\left(\frac{dy}{dx}+ (x+ 1)y\right)= xe^x, d(xexy)dy=xex\displaystyle \frac{d(xe^xy)}{dy}= xe^x. Integrating the left side gives, of course, xexy\displaystyle xe^xy. Integrating the right side, using "integration by parts", let u= x and dv=exdx\displaystyle dv= e^xdx so that du=dx\displaystyle du= dx and v=ex\displaystyle v= e^x so udv=uvvdu=xexexdx=xexex\displaystyle \int u dv= uv- \int vdu= xe^x- \int e^xdx= xe^x- e^x. Integrating both sides gives xexy=xexex+C\displaystyle xe^xy= xe^x- e^x+ C. Divide both side by xex\displaystyle xe^x to get y=11x+Cxex\displaystyle y= 1- \frac{1}{x}+ \frac{C}{x}e^{-x}.
 
A constraint on the solution above is:

x0\displaystyle x \ne 0
 
Top