Cauchy-Schwarz Inequality

homeschool girl

Junior Member
Joined
Feb 6, 2020
Messages
123
The Problem:

Let a, b, c, d, e, f be nonnegative real numbers.

(a) Prove that
[math](a^2 + b^2)^2 (c^4 + d^4)(e^4 + f^4) \ge (ace + bdf)^4.[/math](b) Prove that
[math](a^2 + b^2)(c^2 + d^2)(e^2 + f^2) \ge (ace + bdf)^2.[/math]

Hints:

(a) Work with [imath](c^4 + d^4)(e^4 + f^4)[/imath] first.
(b) Try proving an inequality of the form [imath](a^2 + b^2)(\text{expression}) \ge (ace + bdf)^2[/imath].


Where I'm at so far:

for part a, I used the Cauchy-Schwarz inequality on [imath](a, b),[/imath] and [imath](ce, df)[/imath] to get

[imath](c^4 + d^4)(e^4 + f^4) \ge (c^2e^2 + d^2f^2)^2[/imath]

then I multiplied both sides by [imath](a^2+b^2)^2[/imath]

[imath](a^2+b^2)^2(c^4 + d^4)(e^4 + f^4) \ge (a^2+b^2)^2(c^2e^2 + d^2f^2)^2[/imath]

the expansion of [imath](ace + bdf)^4[/imath] is is close to the expansion of [imath](a^2+b^2)^2(c^2e^2 + d^2f^2)^2[/imath], but not quite, and I'm not sure how I could prove [imath](a^2+b^2)^2(c^2e^2 + d^2f^2)^2 \ge (ace + bdf)^4[/imath].


for part b, I used the Cauchy-Schwarz inequality on [imath](c^2, d^2),[/imath] and [imath](e^2, f^2)[/imath] :

[imath](a^2 + b^2)(c^2e^2+d^2f^2) \ge (ace + bdf)^2,[/imath]

which is close to the given inequality, but [imath](c^2 + d^2)(e^2 + f^2) = c^2e^2+d^2f^2+c^2f^2+d^2e^2[/imath], not [imath]c^2e^2+d^2f^2[/imath].

however, if i could prove that [imath](a^2 + b^2)(c^2f^2+d^2e^2) \ge 0[/imath], then i could subtract it from [imath](a^2 + b^2)(c^2e^2+d^2f^2) \ge (ace + bdf)^2[/imath], to get
[imath](a^2 + b^2)(c^2e^2+d^2f^2+c^2f^2+d^2e^2)-(a^2 + b^2)(c^2f^2+d^2e^2)\ge (ace + bdf)^2[/imath], which simplifies to
[imath](a^2 + b^2)(c^2 + d^2)(e^2 + f^2) \ge (ace + bdf)^2.[/imath]

but i don't know how to go about proving [imath](a^2 + b^2)(c^2f^2+d^2e^2) \ge 0[/imath].

I'm completely stuck on how to finish the problem and at this point, I don't even know if I'm on the right track, so any help is appreciated, Thanks!
 
Last edited:
The Problem:

Let a, b, c, d, e, f be nonnegative real numbers.

(a) Prove that
[math](a^2 + b^2)^2 (c^4 + d^4)(e^4 + f^4) \ge (ace + bdf)^4.[/math](b) Prove that
[math](a^2 + b^2)(c^2 + d^2)(e^2 + f^2) \ge (ace + bdf)^2.[/math]

Hints:

(a) Work with [imath](c^4 + d^4)(e^4 + f^4)[/imath] first.
(b) Try proving an inequality of the form [imath](a^2 + b^2)(\text{expression}) \ge (ace + bdf)^2[/imath].


Where I'm at so far:

for part a, I used the Cauchy-Schwarz inequality on [imath](a, b),[/imath] and [imath](ce, df)[/imath] to get

[imath](c^4 + d^4)(e^4 + f^4) \ge (c^2e^2 + d^2f^2)^2[/imath]

then I multiplied both sides by [imath](a^2+b^2)^2[/imath]

[imath](a^2+b^2)^2(c^4 + d^4)(e^4 + f^4) \ge (a^2+b^2)^2(c^2e^2 + d^2f^2)^2[/imath]

the expansion of [imath](ace + bdf)^4[/imath] is is close to the expansion of [imath](a^2+b^2)^2(c^2e^2 + d^2f^2)^2[/imath], but not quite, and I'm not sure how I could prove [imath](a^2+b^2)^2(c^2e^2 + d^2f^2)^2 \ge (ace + bdf)^4[/imath].


for part b, I used the Cauchy-Schwarz inequality on [imath](c^2, d^2),[/imath] and [imath](e^2, f^2)[/imath] :

[imath](a^2 + b^2)(c^2e^2+d^2f^2) \ge (ace + bdf)^2,[/imath]

which is close to the given inequality, but [imath](c^2 + d^2)(e^2 + f^2) = c^2e^2+d^2f^2+c^2f^2+d^2e^2[/imath], not [imath]c^2e^2+d^2f^2[/imath].

however, if i could prove that [imath](a^2 + b^2)(c^2f^2+d^2e^2) \ge 0[/imath], then i could subtract it from [imath](a^2 + b^2)(c^2e^2+d^2f^2) \ge (ace + bdf)^2[/imath], to get
[imath](a^2 + b^2)(c^2e^2+d^2f^2+c^2f^2+d^2e^2)-(a^2 + b^2)(c^2f^2+d^2e^2)\ge (ace + bdf)^2[/imath], which simplifies to
[imath](a^2 + b^2)(c^2 + d^2)(e^2 + f^2) \ge (ace + bdf)^2.[/imath]

but i don't know how to go about proving [imath][COLOR=rgb(184, 49, 47)][B](a^2 + b^2)(c^2f^2+d^2e^2)[/B][/COLOR] \ge 0[/imath].

I'm completely stuck on how to finish the problem and at this point, I don't even know if I'm on the right track, so any help is appreciated, Thanks!
Each term is a square term - each term is >0

So (c^2f^2+d^2e^2) >0
 
...[imath](c^4 + d^4)(e^4 + f^4) \ge (c^2e^2 + d^2f^2)^2[/imath]

then I multiplied both sides by [imath](a^2+b^2)^2[/imath]

[imath](a^2+b^2)^2(c^4 + d^4)(e^4 + f^4) \ge (a^2+b^2)^2(c^2e^2 + d^2f^2)^2[/imath]

the expansion of...

Don't expand. Hint...

[imath](a^2+b^2)^2(c^4 + d^4)(e^4 + f^4) \ge (a^2+b^2)^2 \left( (ce)^2 + (df)^2 \right)^2 \ge\,[/imath]???
 
Let g=ce, h=df

[imath]\left(a^2+b^2\right)^2 \left( g^2 + h^2 \right)^2 = \left[ \color{red}\left(a^2+b^2\right) \left( g^2 + h^2 \right) \color{black}\right]^2 [/imath]

Can you use Cauchy-Schwarz Inequality, a second time, on the red part above and then also prove that if x>y AND x,y>0 then x^2 > y^2
 
Top