Center of mass

AmalManohar

New member
Joined
Mar 18, 2019
Messages
2
Find the center of mass of an item with constant density that is bounded in the first quadrant by the unit circle and the line x+y = 1.

I have no idea how to solve this. Can someone help me?
 
Hello, and welcome to FMH! :)

To begin, can you find the area of the bounded region?
 
No, you're going to want to integrate to find the area of the region...here's a diagram:

fmh_0016.png

We don't actually have to integrate, if we apply some basic geometry, but since you are in a calculus course, let's go ahead and integrate. Can you set up a definite integral to compute the shaded area in the diagram?
 
Using simple geometry, we know this area will be:

[MATH]A=\frac{1}{4}(\pi-2)=\frac{\pi}{4}-\frac{1}{2}[/MATH]
Let's integrate:

[MATH]A=\int_0^1\sqrt{1-x^2}-(1-x)\,dx=\int_0^1\sqrt{1-x^2}+x-1\,dx[/MATH]
Now, consider:

[MATH]A_1=\int_0^1 \sqrt{1-x^2}\,dx[/MATH]
Let:

[MATH]x=\sin(\theta)\implies dx=\cos(\theta)\,d\theta[/MATH]
And we obtain:

[MATH]A_1=\int_0^{\frac{\pi}{2}} cos^2(\theta)\,d\theta[/MATH]
Utilize a double-angle identity for cosine:

[MATH]A_1=\frac{1}{2}\int_0^{\frac{\pi}{2}} cos(2\theta)+1\,d\theta=\frac{1}{4}\left[\sin(2\theta)+2x\right]_0^{\frac{\pi}{2}}=\frac{\pi}{4}[/MATH]
Next, consider:

[MATH]A_2=\int_0^1 x-1\,dx=\frac{1}{2}\left[x^2-2x\right]_0^1=-\frac{1}{2}[/MATH]
Hence:

[MATH]A=A_1+A_2=\frac{\pi}{4}-\frac{1}{2}\quad\checkmark[/MATH]
Next, we want to compute the moment of the system about the \(y\)-axis:

[MATH]M_y=\int_0^1 x\left(\sqrt{1-x^2}+x-1\right)\,dx[/MATH]
Consider:

[MATH]M_{y_1}=\int_0^1 x\sqrt{1-x^2}\,dx[/MATH]
Let:

[MATH]u=1-x^2\implies du=-2x\,dx[/MATH]
And we have:

[MATH]M_{y_1}=\frac{1}{2}\int_0^1 \sqrt{u}\,du=\frac{1}{3}[/MATH]
And next:

[MATH]M_{y_2}=\int_0^1 x^2-x\,dx=\frac{1}{6}\left[2x^3-3x^2\right]_0^1=-\frac{1}{6}[/MATH]
Hence:

[MATH]M_y=\frac{1}{3}-\frac{1}{6}=\frac{1}{6}[/MATH]
Next, we want to compute the moment of the system about the \(x\)-axis:

[MATH]M_x=\frac{1}{2}\int_0^1\left(\sqrt{1-x^2}\right)^2-\left(1-x\right)^2\,dx=\frac{1}{6}[/MATH]
And so we find:

[MATH]\overline{x}=\overline{y}=\frac{M_y}{A}=\frac{\dfrac{1}{6}}{\dfrac{\pi}{4}-\dfrac{1}{2}}=\frac{2}{3\pi-6}[/MATH]
Here's a diagram with the centroid plotted:

fmh_0018.png
 
Top