L Lime New member Joined Sep 8, 2006 Messages 49 Oct 9, 2006 #1 u = (x^2 + 5) / (x - 1) How do you get from this: (1/u) * [{(x - 1)(2x) - (x^2 + 5)} / {(x - 1)^2}] To this: (x - 1)/(x^2 + 5) * (x^2 - 2x - 5) / (x - 1)^2 ... Does (1/u) = (x - 1)/(x^2 + 5) ???
u = (x^2 + 5) / (x - 1) How do you get from this: (1/u) * [{(x - 1)(2x) - (x^2 + 5)} / {(x - 1)^2}] To this: (x - 1)/(x^2 + 5) * (x^2 - 2x - 5) / (x - 1)^2 ... Does (1/u) = (x - 1)/(x^2 + 5) ???
stapel Super Moderator Staff member Joined Feb 4, 2004 Messages 16,550 Oct 9, 2006 #2 Lime said: u = (x^2 + 5) / (x - 1) Does (1/u) = (x - 1)/(x^2 + 5)? Click to expand... Yes. Eliz.
G galactus Super Moderator Staff member Joined Sep 28, 2005 Messages 7,203 Oct 9, 2006 #4 Quotient rule: \(\displaystyle \L\\\frac{f(x)}{g(x)}\) \(\displaystyle \L\\\frac{g(x)f'(x)-f(x)g'(x)}{(g'(x))^{2}}\) \(\displaystyle \L\\\frac{(x-1)(2x)-(x^{2}+5)(1)}{(x-1)^{2}}\) \(\displaystyle \L\\=\frac{x^{2}-2x-5}{(x-1)^{2}}\)
Quotient rule: \(\displaystyle \L\\\frac{f(x)}{g(x)}\) \(\displaystyle \L\\\frac{g(x)f'(x)-f(x)g'(x)}{(g'(x))^{2}}\) \(\displaystyle \L\\\frac{(x-1)(2x)-(x^{2}+5)(1)}{(x-1)^{2}}\) \(\displaystyle \L\\=\frac{x^{2}-2x-5}{(x-1)^{2}}\)