challenge question -- Factor the polynomial completely

lookagain

Senior Member
Joined
Aug 22, 2010
Messages
2,369
Edit:

Demonstrate at least two methods for factoring the following polynomial
completely over the integers.


\(\displaystyle x^5 + x^4 + x^3 + x^2 + x + 1\)
 
Last edited:

MarkFL

Super Moderator
Staff member
Joined
Nov 24, 2012
Messages
1,009
Method 1:

Factor first by grouping:

\(\displaystyle (x^5+x^4)+(x^3+x^2)+(x+1)=x^4(x+1)+x^2(x+1)+(x+1)=(x+1)(x^4+x^2+1)\)

Now, for the quartic factor assume it may be factored as follows:

\(\displaystyle x^4+x^2+1=(x^2+ax+1)(x^2+bx+1)=x^4+(a+b)x^3+(ab+2)x^2+(a+b)x+1\)

Equating coefficients, we find:

\(\displaystyle a+b=0\)

\(\displaystyle ab+2=1\)

and so one solution is \(\displaystyle (a,b)=(1,-1)\) and we have:

\(\displaystyle x^4+x^2+1=(x^2+x+1)(x^2-x+1)\) which means:

\(\displaystyle x^5+x^4+x^3+x^2+x+1=(x+1)(x^2+x+1)(x^2-x+1)\)

Method 2:

Let:

\(\displaystyle S=x^5+x^4+x^3+x^2+x+1\) and so:

\(\displaystyle Sx=x^6+x^5+x^4+x^3+x^2+x=S+x^6-1\) hence:

\(\displaystyle S(x-1)=x^6-1=(x^3+1)(x^3-1)=(x+1)(x^2-x+1)(x-1)(x^2+x+1)\) thus:

\(\displaystyle S=(x+1)(x^2-x+1)(x^2+x+1)\)
 

Subhotosh Khan

Super Moderator
Staff member
Joined
Jun 18, 2007
Messages
18,133
A) Give the completely factored form over the integers of the following polynomial, and

B) demonstrate at least two methods for doing so.


\(\displaystyle x^5 + x^4 + x^3 + x^2 + x + 1\)


(x+1)(x4+x2+1) → (x+1)(x4+2x2+1 - x2) → (x+1)(x2+1+x)(x2+1-x)

or

(x3+1)(x2+x+1) →(x+1)(x2-x+1)(x2+x+1)
 

lookagain

Senior Member
Joined
Aug 22, 2010
Messages
2,369
Here is another:


(x^5 + 1) + (x^4 + x^3 + x^2 + x) =

(x + 1)(x^4 - x^3 + x^2 - x + 1) + (x^4 + x^3) + (x^2 + x) =

(x + 1)(x^4 - x^3 + x^2 - x + 1) + x^3(x + 1) + x(x + 1) =

(x + 1)(x^4 - x^3 + x^2 - x + 1 + x^3 + x) =

(x + 1)(x^4 + x^2 + 1) =



(You can continue simplifying this with one of the above steps in
any of the appropriate above posts.)
 
Last edited:

daon2

Full Member
Joined
Aug 17, 2011
Messages
992
Here's another way.

Since \(\displaystyle x^5+x^4+x^3+x^2+x+1 = \dfrac{x^6-1}{x-1}\) the roots of this polynomial are exactly the set \(\displaystyle \{z\in \mathbb{C}-\{1\}\,\,;\,\, z^6=1\}\), i.e. the roots of unity, ignoring the positive real root. They are \(\displaystyle e^{\pm i\pi/3},e^{\pm i2\pi/3}, -1 \).

We want a real factorization obviously, and we can see that the conjugate pair to each root is present (as it should be). Pairing them off we get the (minimal) polynomials for each:

\(\displaystyle (x-e^{i\pi/3})(x-e^{- i\pi/3}) = x^2-x+1\)
\(\displaystyle (x-e^{i2\pi/3})(x-e^{- i2\pi/3}) = x^2+x+1\)
\(\displaystyle x-(-1) = x+1\)

There is an abstract algebra/number theoretic variation of the above that can be performed for the general case too.
 

soroban

Elite Member
Joined
Jan 28, 2005
Messages
5,588
Hello, lookagain

This is a variation of daon's solution.


Demonstrate at least two methods for factoring the following polynomial:

. . . \(\displaystyle P(x) \;=\;x^5 + x^4 + x^3 + x^2 + x + 1\)

\(\displaystyle P(x) \;=\;\dfrac{x^6 - 1}{x-1} \;=\;\dfrac{\overbrace{(x^3)^2 - (1^2)}^{\text{diff. of squares}}}{x-1} \)

. . . . .\(\displaystyle =\;\dfrac{\overbrace{(x^3-1)}^{\text{diff.of cubes}}\cdot\overbrace{(x^3+1)}^{\text{sum of cubes}}}{x-1}\)

. . . . .\(\displaystyle =\; \dfrac{(\color{red}{\rlap{/////}}{x-1})(x^2+x+1)(x+1)(x^2-x+1)}{\color{red}{\rlap{/////}}x-1}\)

. . . . .\(\displaystyle =\; (x+1)(x^2+x+1)(x^2-x+1)\)
 

lookagain

Senior Member
Joined
Aug 22, 2010
Messages
2,369
Hello, lookagain

This is a variation of daon's solution.



\(\displaystyle P(x) \;=\;\dfrac{x^6 - 1}{x-1} \;=\;\dfrac{\overbrace{(x^3)^2 - (1^2)}^{\text{diff. of squares}}}{x-1} \)

. . . . .\(\displaystyle =\;\dfrac{\overbrace{(x^3-1)}^{\text{diff.of cubes}}\cdot\overbrace{(x^3+1)}^{\text{sum of cubes}}}{x-1}\)

. . . . .\(\displaystyle =\; \dfrac{(\color{red}{\rlap{/////}}{x-1})(x^2+x+1)(x+1)(x^2-x+1)}{\color{red}{\rlap{/////}}x-1}\)

. . . . .\(\displaystyle =\; (x+1)(x^2+x+1)(x^2-x+1)\)
MarkFL said:
Method 2:

Let:

\(\displaystyle S=x^5+x^4+x^3+x^2+x+1\) and so:

\(\displaystyle Sx=x^6+x^5+x^4+x^3+x^2+x=S+x^6-1\) hence:

\(\displaystyle S(x-1)=x^6-1=(x^3+1)(x^3-1)=(x+1)(x^2-x+1)(x-1)(x^2+x+1)\) thus:

\(\displaystyle S=(x+1)(x^2-x+1)(x^2+x+1)\)

These two (MarkFL's and soroban's versions) look essentially the same to me.


- - - - - - - - - - - - - - - - -


Others:


(x^5 + x^2) + (x^4 + x) + (x^3 + 1) =

x^2(x^3 + 1) + x(x^3 + 1) + 1(x^3 + 1) =

(x^3 + 1)(x^2 + x + 1) =

(x + 1)(x^2 - x + 1)(x^2 + x + 1)


. . . . . . . . . . . . . . . . . . . . .


(x^5 + x^3 + x) + (x^4 + x^2 + 1) =

x(x^4 + x^2 + 1) + 1(x^4 + x^2 + 1) =

(x^4 + x^2 + 1)(x + 1) =

(x^2 - x + 1)(x^2 + x + 1)(x + 1)
 
Top