Its a ciruit with that is essentially a voltage divider.Z1 is a capacitor & resistor in series and Z2 has serial connection capacitor in series with Z1
\(\displaystyle Z1= \frac{1}{jwC}+R\)
\(\displaystyle Z2= \frac{1}{jwC}\)
\(\displaystyle v=\frac{Z2}{Z1+Z2}\)
\(\displaystyle \frac{Z1}{Z2}=\frac{1/jwC+R}{1/jwC} = \frac{(1/jwC)(1/jwC-R)}{(1/JwC+R)(1/JwC-R)}= (1+JwRC)^2\)
Is that correct?
This calculation is abuild up to derive a differential equation relating the output & input signal.
We understand that - but your work is incorrect.
The real term of (1 + jwRC)[sup:edasq57m]2[/sup:edasq57m] = Re[(1 + jwRC)[sup:edasq57m]2[/sup:edasq57m]] = 1- w[sup:edasq57m]2[/sup:edasq57m]R[sup:edasq57m]2[/sup:edasq57m]C[sup:edasq57m]2[/sup:edasq57m]
That is not the real term (Z[sub:edasq57m]1[/sub:edasq57m]/Z[sub:edasq57m]2[/sub:edasq57m])
Re(Z[sub:edasq57m]1[/sub:edasq57m]/Z[sub:edasq57m]2[/sub:edasq57m]) = 1