complex numbers, polar form

Vali

Junior Member
Joined
Feb 27, 2018
Messages
87
I have these complex numbers: z1=sin(a)cos(a)+i(sin(a)+cos(a))\displaystyle z_1=\sin(a)-\cos(a)+i(\sin(a)+\cos(a)) and z2=sin(a)+cos(a)+i(sin(a)cos(a))\displaystyle z_2=\sin(a)+\cos(a)+i(\sin(a)-\cos(a))

I need to find a\displaystyle a values such that the absolute value of complex number w=(z1)n+(z2)n\displaystyle w=(z_1)^n+(z_2)^n is maximum.The right answer is kπn+π2\displaystyle \frac{k\pi}{n}+\frac{\pi}{2}

My try: I wrote (sin(a)+cos(a)=2sin(π4+a)\displaystyle (\sin(a)+\cos(a)=\sqrt{2}\sin(\frac{\pi}{4}+a) and sin(a)cos(a)=2cos(3π4a)\displaystyle \sin(a)-\cos(a)=\sqrt{2}\cos(\frac{3\pi}{4}-a) so z1=2[cos(3π4a)+isin(pi4+a)]\displaystyle z_1=\sqrt{2}[\cos(\frac{3\pi}{4}-a)+i\sin(\frac{pi}{4}+a)] but the polar form it's not good.How to convert it to the polar form ?How to approach this exercise?
 
Top