I have the following function:
[MATH]y_{it} = ln \left(a_{1}+ \sum_{j=2}^{J}\frac{a_{j}}{e^{q_{ji}+b_{jit}}}\right)+\frac{1}{r}\sum_{j=2}^{J}a_{j}q_{ji}-ln\left(a_{1}+\sum_{j=2}^{J}(a_{j}e^{-b_{jit}})\right)[/MATH]
where e above is the natural exponent. Furthermore, qji is a composite function, i.e., qji(zit). I want to calculate the partial derivative of yit with respect to zit, i.e.,
[MATH]\frac{\partial y_{it}}{\partial z_{it}} = ?[/MATH]
I need the expression as an input to a larger problem that I am working on. Any help is highly appreciated.
ps. You can indicate the derivative of zit as zit′ in the solution since I do not provide the expression for zit.
[MATH]y_{it} = ln \left(a_{1}+ \sum_{j=2}^{J}\frac{a_{j}}{e^{q_{ji}+b_{jit}}}\right)+\frac{1}{r}\sum_{j=2}^{J}a_{j}q_{ji}-ln\left(a_{1}+\sum_{j=2}^{J}(a_{j}e^{-b_{jit}})\right)[/MATH]
where e above is the natural exponent. Furthermore, qji is a composite function, i.e., qji(zit). I want to calculate the partial derivative of yit with respect to zit, i.e.,
[MATH]\frac{\partial y_{it}}{\partial z_{it}} = ?[/MATH]
I need the expression as an input to a larger problem that I am working on. Any help is highly appreciated.
ps. You can indicate the derivative of zit as zit′ in the solution since I do not provide the expression for zit.
Last edited: