Constant of integration problem

MrJoe2000

New member
Joined
Nov 1, 2011
Messages
26
So I have an derivative of ds= tdt/(2t + 1)^1/2

when t=0, s=0

what is s when t=24?

I figured out my integral to be [(2t+1)^1/2]/2 + 1/(2(2t+1)^1/2) + C

The book answer is s= 54 but I cant seem to get there. Can anyone help?
 
So I have an derivative of ds= tdt/(2t + 1)^1/2

when t=0, s=0

what is s when t=24?

I figured out my integral to be [(2t+1)^1/2]/2 + 1/(2(2t+1)^1/2) + C

The book answer is s= 54 but I cant seem to get there. Can anyone help?

Your integration is incorrect.

Please show your steps. The correct answer should have an exponent of (3/2). Try the integration again....
 
Hello, MrJoe2000!

I believe you integrated incorrectly.


\(\displaystyle \text{I have: }\:ds\:=\:\dfrac{t\,dt}{(2t+1)^{\frac{1}{2}}}\)

\(\displaystyle \text{When }t=0,\,s=0\)

\(\displaystyle \text{What is }s\text{ when }t=24\,?\)

\(\displaystyle \displaystyle\text{We want: }s \;=\;\int\frac{t\,dt}{\sqrt{2t+1}} \)

\(\displaystyle \text{Let }\,u \,=\,\sqrt{2t+1} \quad\Rightarrow\quad u^2 \,=\,2t+1 \quad\Rightarrow\quad t \,=\,\frac{u^2-1}{2} \quad\Rightarrow\quad dt \,=\,u\,du\)

\(\displaystyle \displaystyle\text{Substitute: }\:\int\frac{\left(\frac{u^2-1}{2}\right)(u\,du)}{u} \;=\;\frac{1}{2}\int(u^2-1)\,du\)


. . . . . . . . \(\displaystyle =\;\dfrac{1}{2}\left(\dfrac{u^3}{3} - u\right) + C \;=\;\dfrac{u}{6}(u^2-3) + C\)


\(\displaystyle \text{Back-substitute: }\:s \;=\;\dfrac{\sqrt{2t+1}}{6}\big[(2t+1) - 3\big] + C \;\;=\;\; \dfrac{\sqrt{2t+1}}{6}(2t-2) + C \)

. . . . . . . . . . . . . \(\displaystyle s \;=\;\dfrac{\sqrt{2t+1}(t-1)}{3} + C \)


\(\displaystyle \text{When }t = 0,\,s = 0\!:\;\;0 \;=\;\dfrac{\sqrt{1}(-1)}{3} + C \quad\Rightarrow\quad C \:=\:\frac{1}{3} \)

\(\displaystyle \text{Hence: }\:s \;=\;\frac{1}{2}(t-1)\sqrt{2t+1} + \frac{1}{3} \)


\(\displaystyle \text{When }t = 24\!:\;\;s \;=\;\frac{1}{3}(24-1)\sqrt{2(24)+1} + \frac{1}{3} \;=\;\frac{1}{3}(23)(7) + \frac{1}{3} \)

. . . . . . . . . . . . \(\displaystyle s \;=\;\frac{161}{3} + \frac{1}{3} \;=\;\frac{162}{3} \;=\;\boxed{54}\)
 
Top