\(\displaystyle \lim n \rightarrow \infty \sum_{n = 1}^{\infty} (-1)^{n}\dfrac{n - 1}{n^{2} + n}\)
\(\displaystyle \lim n \rightarrow \infty \sum_{n = 1}^{\infty} (-1)^{\infty}\dfrac{(\infty) - 1}{(\infty)^{2} + (\infty)}\)
\(\displaystyle \lim n \rightarrow \infty \sum_{n = 1}^{\infty} (0)\dfrac{(\infty) - 1}{(\infty)}\)
Is this reasoning correct so far?
\(\displaystyle \lim n \rightarrow \infty \sum_{n = 1}^{\infty} (-1)^{\infty}\dfrac{(\infty) - 1}{(\infty)^{2} + (\infty)}\)
\(\displaystyle \lim n \rightarrow \infty \sum_{n = 1}^{\infty} (0)\dfrac{(\infty) - 1}{(\infty)}\)
Last edited: