Converting an equation to a standard 4th order polynomial.

Shaun Jones

New member
Joined
Jul 8, 2020
Messages
1
Screenshot 2020-07-08 at 14.42.48.png
I am trying to convert this equation into a fourth order polynomial (aTtop^4 + bTtop^3 + cTtop^2 + dTtop + e = 0).
I think I multiply each section by h/k?
Any help would be appreciated!
 
I am not sure what your problem is. Multiplying by h/k will leave you Tbot-Ttop on the rhs. Your equation contains already a fourth order polynomial.
 
With yocar04's suggestion, multiplying by h/k, we have
(h/k)(1α)FSW(h/k)Fother+0.955.67108(h/k)Ttop4=Ttop+Tbot-(h/k)(1- \alpha)F_{SW}- (h/k)F_{other}+ 0.95\cdot 5.67\cdot 10^{-8}(h/k) T_{top}^4= -T_{top}+ T_{bot}.

That can be written
0.955.67108(h/k)Ttop4+Ttop+(h/k)(1α)FSW(h/k)FotherTbot=00.95\cdot 5.67\cdot 10^{-8}(h/k) T_{top}^4+ T_{top}+ -(h/k)(1- \alpha)F_{SW}- (h/k)F_{other}- T_{bot}= 0.

That is precisely the form you want with a=0.955.67108(h/k)a= 0.95\cdot 5.67\cdot 10^{-8}(h/k), b=0, c= 0, d= 1, and e=(h/k)(1α)FSW(h/k)FotherTbote= -(h/k)(1- \alpha)F_{SW}- (h/k)F_{other}- T_{bot}.
 
Top