f(x)=cos(x)
f′(x)=dxdcos(x)=−sin(x)
Proof
Using: limh→0[h(x+h)−(f(x))]
limh→0[hcos(x+h)−(cos(x))]
limh→0[h[cos(x)cos(h)−sin(x)sin(h)]−(sin(x))] using sum and difference identity cos(A+B)=cos(A)cos(B)−sin(A)sin(B) for cos(x+h) Next move
f′(x)=dxdcos(x)=−sin(x)
Proof
Using: limh→0[h(x+h)−(f(x))]
limh→0[hcos(x+h)−(cos(x))]
limh→0[h[cos(x)cos(h)−sin(x)sin(h)]−(sin(x))] using sum and difference identity cos(A+B)=cos(A)cos(B)−sin(A)sin(B) for cos(x+h) Next move
Last edited: