Does this question sound right? Also, what is the latex notation for "evaluated at upper and lower bounds" for after you began to actually take the integral? 
\(\displaystyle \int_{-2}^{1} x(5x^{2} - 3)^{1/2} dx\).
\(\displaystyle \int_{-2}^{1} x(u)^{1/2} dx\).
\(\displaystyle u = 5x - 3\).
\(\displaystyle du = 10x dx\).
\(\displaystyle \dfrac{1}{10}du = x dx\).
\(\displaystyle \int_{-2}^{1} (u)^{1/2} \dfrac{1}{10}du\).
\(\displaystyle \dfrac{1}{10} \int_{-2}^{1} (u)^{1/2} \dfrac{1}{10}du\).
\(\displaystyle \rightarrow (\dfrac{1}{10}) \dfrac{(u)^{3/2}}{\dfrac{3}{2}}\).
\(\displaystyle \rightarrow (\dfrac{1}{10})(\dfrac{2}{3}) (u)^{3/2} \).
\(\displaystyle \rightarrow (\dfrac{2}{30})(u)^{3/2} \).
\(\displaystyle \rightarrow (\dfrac{1}{15})(u)^{3/2} \).
Some missing latex symbols here.
\(\displaystyle \rightarrow \dfrac{1}{15}(5x - 3)^{3/2} \).
\(\displaystyle [\dfrac{1}{15}(5(-2) - 3)^{3/2}] - [\dfrac{1}{15}(5(1) - 3)^{3/2}]\).
What is the area of a curve with a derivative of \(\displaystyle x(5x^{2} - 3)^{1/2} dx \) on the closed interval \(\displaystyle [-2,1]\)?
\(\displaystyle \int_{-2}^{1} x(5x^{2} - 3)^{1/2} dx\).
\(\displaystyle \int_{-2}^{1} x(u)^{1/2} dx\).
\(\displaystyle u = 5x - 3\).
\(\displaystyle du = 10x dx\).
\(\displaystyle \dfrac{1}{10}du = x dx\).
\(\displaystyle \int_{-2}^{1} (u)^{1/2} \dfrac{1}{10}du\).
\(\displaystyle \dfrac{1}{10} \int_{-2}^{1} (u)^{1/2} \dfrac{1}{10}du\).
\(\displaystyle \rightarrow (\dfrac{1}{10}) \dfrac{(u)^{3/2}}{\dfrac{3}{2}}\).
\(\displaystyle \rightarrow (\dfrac{1}{10})(\dfrac{2}{3}) (u)^{3/2} \).
\(\displaystyle \rightarrow (\dfrac{2}{30})(u)^{3/2} \).
\(\displaystyle \rightarrow (\dfrac{1}{15})(u)^{3/2} \).
\(\displaystyle \rightarrow \dfrac{1}{15}(5x - 3)^{3/2} \).
\(\displaystyle [\dfrac{1}{15}(5(-2) - 3)^{3/2}] - [\dfrac{1}{15}(5(1) - 3)^{3/2}]\).