Anthonyk2013
Junior Member
- Joined
- Sep 15, 2013
- Messages
- 132
Differentiate the quotient with respect to the variable.
. . . . .\(\displaystyle 7.\, \dfrac{2x e^{4x}}{\sin(x)}\)
Is it correct to use the product rule for U in this problem? Here's my working so far:
Q7130. . . . .\(\displaystyle \dfrac{2x e^{4x}}{\sin(x)}\). . .\(\displaystyle \dfrac{u}{v}\)
. . . . .\(\displaystyle u\, =\, 2x\, e^{4x}\,\) . . . . .\(\displaystyle \dfrac{du}{dx}\, =\, (2x)\, \left(4e^{4x}\right)\, +\, \left(e^{4x}\right)\, (2)\)
. . . . .\(\displaystyle v\, =\, \sin(x)\, \) . . . . .\(\displaystyle \dfrac{dv}{dx}\, =\, \cos(x)\)
. . . . .\(\displaystyle \dfrac{dy}{dx}\, =\, \dfrac{(\sin(x))\, \left(2\, (2x\, e^{4x}\, +\, 2\, e^{4x})\right)\, -\, \left(2x\, e^{4x}\right)\, (\cos(x))}{(\sin(x))^2}\)
. . . . .\(\displaystyle 7.\, \dfrac{2x e^{4x}}{\sin(x)}\)
Is it correct to use the product rule for U in this problem? Here's my working so far:
Q7130. . . . .\(\displaystyle \dfrac{2x e^{4x}}{\sin(x)}\). . .\(\displaystyle \dfrac{u}{v}\)
. . . . .\(\displaystyle u\, =\, 2x\, e^{4x}\,\) . . . . .\(\displaystyle \dfrac{du}{dx}\, =\, (2x)\, \left(4e^{4x}\right)\, +\, \left(e^{4x}\right)\, (2)\)
. . . . .\(\displaystyle v\, =\, \sin(x)\, \) . . . . .\(\displaystyle \dfrac{dv}{dx}\, =\, \cos(x)\)
. . . . .\(\displaystyle \dfrac{dy}{dx}\, =\, \dfrac{(\sin(x))\, \left(2\, (2x\, e^{4x}\, +\, 2\, e^{4x})\right)\, -\, \left(2x\, e^{4x}\right)\, (\cos(x))}{(\sin(x))^2}\)
Last edited by a moderator: