Differentiation/Integration Disagreement

ChaoticLlama

Junior Member
Joined
Dec 11, 2004
Messages
199
Consider the function \(\displaystyle \L\ y = \arctan \left( {\frac{1}{x}} \right)\).

To the best of my knowledge;
\(\displaystyle \L\begin{array}{c}
\frac{{dy}}{{dx}} = \frac{1}{{1 + \frac{1}{{x^2 }}}}\left( {\frac{{ - 1}}{{x^2 }}} \right) \\
= \frac{{ - 1}}{{x^2 + 1}} \\
\end{array}\)

and if you integrate the new function, you get;
\(\displaystyle \L\int {\frac{{ - dx}}{{x^2 + 1}}} = - \arctan (x) + C\)

Now unless I'm missing something here; I think I broke Calculus.
 
Hello, ChaoticLlama!

A fascinating "contradiction" . . . thank you for pointing it out!
It is going immediately into my "Mathematical Curiosities" file.


Consider the function \(\displaystyle \L\ y = \arctan \left( {\frac{1}{x}} \right)\).

To the best of my knowledge;
\(\displaystyle \L\;\;\; \frac{{dy}}{{dx}} \:= \:\frac{1}{{1 + \frac{1}{{x^2 }}}}\left( {\frac{{ - 1}}{{x^2 }}} \right) \;= \;\frac{{ - 1}}{{x^2 + 1}}\)

and if you integrate the new function, you get;
\(\displaystyle \L\;\;\;\int \frac{- dx}{x^2 + 1} \; =\; - \arctan (x) + C\)

Now unless I'm missing something here, I think I broke Calculus.

We will find that the two answers are equal (for a particular value of \(\displaystyle C\)).

\(\displaystyle \;\;\)That is: \(\displaystyle \,\arctan\left(\frac{1}{x}\right) \;= \;-\arctan(x)\,+\,C\;\;\text{ for }C\, =\, \frac{\pi}{2}\)


Let \(\displaystyle \alpha\,=\,\arctan\left(\frac{1}{x}\right)\)

Then \(\displaystyle \alpha\) is an acute angle in a right triangle with: \(\displaystyle opp\,=\,1,\;adj\,=\,x.\)
Code:
                  *
               *  *
            *     * 1
         * α      *
      * * * * * * *
            x

Let \(\displaystyle \beta\,=\,\arctan(x)\)

Then \(\displaystyle \beta\) is an acute angle in a right triangle with: \(\displaystyle opp\,=\,x,\;adj\,=\,1\)


Get it? . . . \(\displaystyle \,\beta\) is the "other acute angle": \(\displaystyle \:\alpha\,+\,\beta\:=\:\frac{\pi}{2}\)


Hence: \(\displaystyle \,\arctan\left(\frac{1}{x}\right)\,+\,\arctan(x)\;=\;\frac{\pi}{2}\;\;\Rightarrow\;\;\arctan\left(\frac{1}{x}\right)\;=\;-\arctan(x)\,+\,\frac{\pi}{2}\)

 
soroban said:
Hence: \(\displaystyle \,\arctan\left(\frac{1}{x}\right)\,+\,\arctan(x)\;=\;\frac{\pi}{2}\;\;\Rightarrow\;\;\arctan\left(\frac{1}{x}\right)\;=\;-\arctan(x)\,+\,\frac{\pi}{2}\)
That is true only if x>0!
 
In some way the functions are still equal, but this is a strange situation indeed. Both functions have the same derivative, but are only equal themselves for a single constant. Is there any reason why? Or maybe it's just another oddity?

(I still like to think that I broke Calculus :wink: )
 
Top