Differentiation/Integration Disagreement

ChaoticLlama

Junior Member
Joined
Dec 11, 2004
Messages
199
Consider the function \(\displaystyle \L\ y = \arctan \left( {\frac{1}{x}} \right)\).

To the best of my knowledge;
\(\displaystyle \L\begin{array}{c}
\frac{{dy}}{{dx}} = \frac{1}{{1 + \frac{1}{{x^2 }}}}\left( {\frac{{ - 1}}{{x^2 }}} \right) \\
= \frac{{ - 1}}{{x^2 + 1}} \\
\end{array}\)

and if you integrate the new function, you get;
\(\displaystyle \L\int {\frac{{ - dx}}{{x^2 + 1}}} = - \arctan (x) + C\)

Now unless I'm missing something here; I think I broke Calculus.
 
Hello, ChaoticLlama!

A fascinating "contradiction" . . . thank you for pointing it out!
It is going immediately into my "Mathematical Curiosities" file.


Consider the function \(\displaystyle \L\ y = \arctan \left( {\frac{1}{x}} \right)\).

To the best of my knowledge;
\(\displaystyle \L\;\;\; \frac{{dy}}{{dx}} \:= \:\frac{1}{{1 + \frac{1}{{x^2 }}}}\left( {\frac{{ - 1}}{{x^2 }}} \right) \;= \;\frac{{ - 1}}{{x^2 + 1}}\)

and if you integrate the new function, you get;
\(\displaystyle \L\;\;\;\int \frac{- dx}{x^2 + 1} \; =\; - \arctan (x) + C\)

Now unless I'm missing something here, I think I broke Calculus.

We will find that the two answers are equal (for a particular value of C\displaystyle C).

    \displaystyle \;\;That is: arctan(1x)  =  arctan(x)+C     for C=π2\displaystyle \,\arctan\left(\frac{1}{x}\right) \;= \;-\arctan(x)\,+\,C\;\;\text{ for }C\, =\, \frac{\pi}{2}


Let α=arctan(1x)\displaystyle \alpha\,=\,\arctan\left(\frac{1}{x}\right)

Then α\displaystyle \alpha is an acute angle in a right triangle with: opp=1,  adj=x.\displaystyle opp\,=\,1,\;adj\,=\,x.
Code:
                  *
               *  *
            *     * 1
         * α      *
      * * * * * * *
            x

Let β=arctan(x)\displaystyle \beta\,=\,\arctan(x)

Then β\displaystyle \beta is an acute angle in a right triangle with: opp=x,  adj=1\displaystyle opp\,=\,x,\;adj\,=\,1


Get it? . . . β\displaystyle \,\beta is the "other acute angle": α+β=π2\displaystyle \:\alpha\,+\,\beta\:=\:\frac{\pi}{2}


Hence: arctan(1x)+arctan(x)  =  π2        arctan(1x)  =  arctan(x)+π2\displaystyle \,\arctan\left(\frac{1}{x}\right)\,+\,\arctan(x)\;=\;\frac{\pi}{2}\;\;\Rightarrow\;\;\arctan\left(\frac{1}{x}\right)\;=\;-\arctan(x)\,+\,\frac{\pi}{2}

 
soroban said:
Hence: arctan(1x)+arctan(x)  =  π2        arctan(1x)  =  arctan(x)+π2\displaystyle \,\arctan\left(\frac{1}{x}\right)\,+\,\arctan(x)\;=\;\frac{\pi}{2}\;\;\Rightarrow\;\;\arctan\left(\frac{1}{x}\right)\;=\;-\arctan(x)\,+\,\frac{\pi}{2}
That is true only if x>0!
 
In some way the functions are still equal, but this is a strange situation indeed. Both functions have the same derivative, but are only equal themselves for a single constant. Is there any reason why? Or maybe it's just another oddity?

(I still like to think that I broke Calculus :wink: )
 
Top