Anthonyk2013
Junior Member
- Joined
- Sep 15, 2013
- Messages
- 132
Is this correct and I yes can I simplify more?
\(\displaystyle 5.\, \sqrt{\strut x^3\, }\, \ln(3x)\)
\(\displaystyle u\, =\, \sqrt{\strut x^3\,}\, =\, x^{\frac{3}{2}}\)
\(\displaystyle \dfrac{du}{dx}\, =\, \dfrac{3}{2}\, x^{\frac{1}{2}}\, =\, \dfrac{3}{2\, \sqrt{\strut x\,}}\)
\(\displaystyle v\, =\, \ln(3x)\)
\(\displaystyle \dfrac{dv}{dx}\, =\, \dfrac{1}{3x}\, \times\, 3\, =\, \dfrac{1}{x}\)
\(\displaystyle \dfrac{dy}{dx}\, =\, \bigg(\, \sqrt{\strut x^3\, }\, \bigg)\, \bigg(\, \dfrac{1}{x}\, \bigg)\, +\, \bigg(\, \ln(3x)\, \bigg)\, \bigg(\, \dfrac{3}{2\, \sqrt{\strut x\,}}\, \bigg)\)
\(\displaystyle 5.\, \sqrt{\strut x^3\, }\, \ln(3x)\)
\(\displaystyle u\, =\, \sqrt{\strut x^3\,}\, =\, x^{\frac{3}{2}}\)
\(\displaystyle \dfrac{du}{dx}\, =\, \dfrac{3}{2}\, x^{\frac{1}{2}}\, =\, \dfrac{3}{2\, \sqrt{\strut x\,}}\)
\(\displaystyle v\, =\, \ln(3x)\)
\(\displaystyle \dfrac{dv}{dx}\, =\, \dfrac{1}{3x}\, \times\, 3\, =\, \dfrac{1}{x}\)
\(\displaystyle \dfrac{dy}{dx}\, =\, \bigg(\, \sqrt{\strut x^3\, }\, \bigg)\, \bigg(\, \dfrac{1}{x}\, \bigg)\, +\, \bigg(\, \ln(3x)\, \bigg)\, \bigg(\, \dfrac{3}{2\, \sqrt{\strut x\,}}\, \bigg)\)
Last edited by a moderator: