Differentiation under integral sign

Win_odd Dhamnekar

Junior Member
Joined
Aug 14, 2018
Messages
207
Hello,
How to find [MATH]\displaystyle\int_0^{\pi} \frac{dx}{(5+3*cos(x))^3}[/MATH] and[MATH]\displaystyle\int_0^{\pi}\frac{sin^2(x)}{(5+3*cos(x))^3}[/MATH] by differentiating under the integral sign via Feynman's trick? I am given the general result that [MATH]\displaystyle\int_0^{\pi}\frac{dx}{(a+b*cos(x))}=\frac{\pi}{\sqrt{(a^2-b^2)}}[/MATH]
Solution:-
If 0<a<b we have,

[MATH]\frac12\displaystyle\int_0^{2\pi}\frac{d\theta}{(b+a*cos(\theta))^2}d\theta=\frac{\pi b}{(b^2-a^2)^{\frac32})} …(1)[/MATH]
By differentiating both sides of (1) with respect to b,

[MATH]\displaystyle\int_0^{2\pi}\frac{d\theta}{(b+a*cos(\theta))^3}=\frac{\pi*(a^2+2*b^2)}{(b^2-a^2)^{\frac52}}…(2)[/MATH]
and by differentiating both sides of (1) with respect to a,

[MATH]\displaystyle\int_0^{2\pi}\frac{cos(\theta)d\theta}{(b+a cos(\theta))^3}=\frac{3\pi a *b}{(b^2-a^2)^{\frac52}}…(3)[/MATH]
Now, how to proceed further, by using (2) and (3) above , to compute the required integrals?

If any member knows the correct answer, may reply with correct answer. I know the correct answer is [MATH]\frac{59*\pi}{2048} and\frac{\pi}{128}[/MATH] respectively................... edited
 
Last edited by a moderator:
Hello,
The value of first integral [MATH]\displaystyle\int_0^\pi \frac{d\theta}{(5+3*cos(\theta))^3}=\frac{59*\pi}{2048}[/MATH]The value of integral [MATH]\displaystyle\int_0^\pi \frac{sin^2(\frac{\theta}{2})}{(5+3*cos(\theta))^3}d\theta=\frac{104*\pi}{4096}=\frac{13*\pi}{512}[/MATH]
Now how to compute second integral [MATH]\displaystyle\int_0^\pi \frac{sin^2(\theta)}{(5+3*cos(\theta))^3}=?[/MATH]
 
Top