\(\displaystyle \int_{-1}^{1}\frac{1-ln(1+x)}{x}dx\) is undefined on the interval [-1,1].
Mainly because \(\displaystyle \int_{-1}^{1}\frac{1}{x}dx\) is undefined on the interval [-1,1].
See the ln(x) in Soroban's series?. It is undefined on the given interval.
But, if we wanted \(\displaystyle \int_{-1}^{1}\frac{ln(1+x)}{x}dx\), then we could hammer out a solution using series and integration.
It works out to be \(\displaystyle \frac{{\pi}^{2}}{4}\)
But, then \(\displaystyle \int_{-1}^{1}\frac{1}{x}dx=-{\pi}i\). In other words, undefined.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The usefulness of ln(1+x) is limited because of its slow convergence and the restriction \(\displaystyle -1< x\leq 1\)
But, if we replace x with -x to get the series for ln(1-x), then subtract the two series we get:
\(\displaystyle ln\left(\frac{1+x}{1-x}\right)=2\left(x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{7}}{7}+\cdot\cdot\cdot\right), \;\ -1\leq x<1\)......[1]
The last series can be used to compute the natural log of any positive number y by letting:
\(\displaystyle y=\frac{1+x}{1-x}\)
\(\displaystyle x=\frac{y-1}{y+1}\).............[2]
and noting that \(\displaystyle -1<x<1\).
Let compute ln(2) by letting y=2 in [2]. This gives \(\displaystyle x=1/3\).
Sub this into [1] and get \(\displaystyle ln(2)=2\left(1/3+\frac{(1/3)^{3}}{3}+\frac{(1/3)^{5}}{5}+\frac{(1/7)^{7}}{7}+\cdot\cdot\cdot\right)\)
This gives ln(2)=.6931 to four decimal places.
We could just let x=1 in the series for ln(1+x), but it converges too slow to be of any real computational value.