\(\displaystyle \int \dfrac{dx}{1 + e^{x}}\) use formula \(\displaystyle \int \dfrac{du}{u} = \ln u + C\)
\(\displaystyle \int \dfrac{e^{x} dx}{1 + e^{x}}\) Make the dx match the du. The \(\displaystyle y'\) of \(\displaystyle e^{x}\) is \(\displaystyle e^{x}\) so du = \(\displaystyle e^{x}\)
\(\displaystyle \dfrac{1}{e^{x}} \int \dfrac{e^{x} dx}{1 + e^{x}} = \int \dfrac{1}{e^{x}} * \ln (1 + e^{x}) + C\) Balance the equations with a reciprocal. Final Answer
Book shows \(\displaystyle - \int \dfrac{-e^{-x} dx}{e^{-x} + 1} = -\ln(1 + e^{-x}) + C\) as the answer. ??
\(\displaystyle \int \dfrac{e^{x} dx}{1 + e^{x}}\) Make the dx match the du. The \(\displaystyle y'\) of \(\displaystyle e^{x}\) is \(\displaystyle e^{x}\) so du = \(\displaystyle e^{x}\)
\(\displaystyle \dfrac{1}{e^{x}} \int \dfrac{e^{x} dx}{1 + e^{x}} = \int \dfrac{1}{e^{x}} * \ln (1 + e^{x}) + C\) Balance the equations with a reciprocal. Final Answer
Book shows \(\displaystyle - \int \dfrac{-e^{-x} dx}{e^{-x} + 1} = -\ln(1 + e^{-x}) + C\) as the answer. ??
Last edited: