Equation of a circle through three points?

timburton91

New member
Joined
Jan 5, 2020
Messages
2
Could any one help me out how i would go about writing an equation of a circle which passes through three points?

So, if the points were (25,15 (35, -8) (32,0)?

I for the life of me can not seem to figure this out...

Any help is great, thank you :)
 

tkhunny

Moderator
Staff member
Joined
Apr 12, 2005
Messages
10,923
Hard to say where you are going wrong, since you have not shared your efforts.

#1 Make SURE your three points are NOT collinear.

Otherwise, it's not possible.

#2a Quick estimate of Center...ummm...(25+35+32)/3 = 30.666... and (15 - 8 + 0)/3 = 2.333..., so (30.666..., 2.333...), then ask yourself if this is REALLY an estimate? It is. Don't be fooled. Make sure you know why. Since it is an estimate, how far can it be off? Ponder the radius.

#2b You may also wish simply to plot the points and eyeball an estimate of the center AND the radius.

This will empower you to know when you wander off.

#3 You need a Center (h,k) and a radius (r). Write the general equation, then plug-n-chug. No?

This may challenge your algebra skills. :) Worst case scenario? Quadratic expressions.

#4 Interesting woodworkers' trick. Given points A, B, and C on a circle, construct the line segment AB. Construct the line segment AC. Construct perpendicular bisector of both AB and AC. The two bisectors intersect at the center of the circle. On a piece of wood, you just need a couple of lines with a straightedge and compass and a mark with a pencil. There is a little more effort to produce the exact analytical solution.
 

MarkFL

Super Moderator
Staff member
Joined
Nov 24, 2012
Messages
2,953
Hello, and welcome to FMH! :)

I would begin with the system:

\(\displaystyle (25-h)^2+(15-k)^2=r^2\implies h^2-50h+k^2-30k+850=r^2\)

\(\displaystyle (35-h)^2+(8+k)^2=r^2\implies h^2-70h+k^2+16k+1289=r^2\)

\(\displaystyle (32-h)^2+k^2=r^2\implies h^2-64h+k^2+1024=r^2\)

Suppose you subtract one of the equations from another...what do you get?
 

Jomo

Elite Member
Joined
Dec 30, 2014
Messages
8,085
You can do the same as the proof for showing that three non-colinear points lie on a unique circle.

Draw three non-colinear points A, B an C.

Draw a line from A to B. Then Draw the perpendicular bisector for this line. ANY point on this line can serve as the center of a circle containing the points A and B. Do you see that?

Now draw a line from B to C. Then Draw the perpendicular bisector for this line. ANY point on this line can serve as the center of a circle containing the points B and C.

The point where these two perpendicular bisectors meet will be the center of the circle containing A, B and C. Do you see that?

Can you continue from here? There is just one last step.
 

timburton91

New member
Joined
Jan 5, 2020
Messages
2
Hello, and welcome to FMH! :)

I would begin with the system:

\(\displaystyle (25-h)^2+(15-k)^2=r^2\implies h^2-50h+k^2-30k+850=r^2\)

\(\displaystyle (35-h)^2+(8+k)^2=r^2\implies h^2-70h+k^2+16k+1289=r^2\)

\(\displaystyle (32-h)^2+k^2=r^2\implies h^2-64h+k^2
+1024=r^2\)

Suppose you subtract one of the equations from another...what do you get?
I'm with you right up untill the end portions of those equations where on earth does, 850 come from? :s
 

hoosie

Junior Member
Joined
May 30, 2014
Messages
185
Using Jomo’s method I have provided an example - hope it helps!A4A80562-9435-40E5-B2DB-12D26899EAA8.jpeg
 

Subhotosh Khan

Super Moderator
Staff member
Joined
Jun 18, 2007
Messages
22,159

Jomo

Elite Member
Joined
Dec 30, 2014
Messages
8,085
Hard to say where you are going wrong, since you have not shared your efforts.

#1 Make SURE your three points are NOT collinear.

Otherwise, it's not possible.

#2a Quick estimate of Center...ummm...(25+35+32)/3 = 30.666... and (15 - 8 + 0)/3 = 2.333..., so (30.666..., 2.333...), then ask yourself if this is REALLY an estimate? It is. Don't be fooled. Make sure you know why. Since it is an estimate, how far can it be off? Ponder the radius.

#2b You may also wish simply to plot the points and eyeball an estimate of the center AND the radius.

This will empower you to know when you wander off.

#3 You need a Center (h,k) and a radius (r). Write the general equation, then plug-n-chug. No?

This may challenge your algebra skills. :) Worst case scenario? Quadratic expressions.

#4 Interesting woodworkers' trick. Given points A, B, and C on a circle, construct the line segment AB. Construct the line segment AC. Construct perpendicular bisector of both AB and AC. The two bisectors intersect at the center of the circle. On a piece of wood, you just need a couple of lines with a straightedge and compass and a mark with a pencil. There is a little more effort to produce the exact analytical solution.
Sorry I did not read to the end of your post where you suggested the same method I suggested a few posts later. I however prefer not to call it a woodworkers' trick but rather a proof.
 

MarkFL

Super Moderator
Staff member
Joined
Nov 24, 2012
Messages
2,953
Hello, and welcome to FMH! :)

I would begin with the system:

\(\displaystyle (25-h)^2+(15-k)^2=r^2\implies h^2-50h+k^2-30k+850=r^2\)

\(\displaystyle (35-h)^2+(8+k)^2=r^2\implies h^2-70h+k^2+16k+1289=r^2\)

\(\displaystyle (32-h)^2+k^2=r^2\implies h^2-64h+k^2+1024=r^2\)

Suppose you subtract one of the equations from another...what do you get?
Using a CAS, I obtained:

\(\displaystyle (h,k,r^2) = \left(-\frac{2583}{22}, -\frac{1333}{22}, \frac{6290629}{242}\right)\)

And so the equation of the circle is:

\(\displaystyle \left(x+\frac{2583}{22}\right)^2+\left(y+\frac{1333}{22}\right)^2=\left(\frac{1}{11}\sqrt{\frac{6290629}{2}}\right)^2\)

fmh_0105.png
 
Top